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The only three non-trivial Boolean CSPs for which satisfiability is

polynomial time decidable.

@ LIN-mod-2 — linear equations modulo 2

o 2-SAT
@ Horn-SAT — a CNF formula where each clause consists of at
most one unnegated literal
o X1, X_2
e X1 VXoVXg
e x A x4 — x5 (equivalent to X3 VX7 V x5)
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Robust algorithms for almost satisfiable instances |

A small € fraction of constraints of a satisfiable instance were
corrupted by noise. Can we still find a good assignment?

Finding almost satisfying assignments

Given an instance which is (1 — €)-satisfiable, can we efficiently

find an assignment satisfying (1 — f(€) — o(1)) constraints, where
f(e) - 0ase— 07
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Robust algorithms for almost satisfiable instances ||

No for (1 — €)-satisfiable LIN-mod-2.

Yes for (1 — €)-satisfiable 2-SAT.

Yes for (1 — ¢)-satisfiable Horn-SAT
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Robust algorithms for almost satisfiable instances ||

No for (1 — €)-satisfiable LIN-mod-2.
e NP-Hard to find a (1/2 + ¢)-satisfying solution. [Héastad'01]
Yes for (1 — €)-satisfiable 2-SAT.

Yes for (1 — ¢)-satisfiable Horn-SAT
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Robust algorithms for almost satisfiable instances ||

No for (1 — €)-satisfiable LIN-mod-2.
e NP-Hard to find a (1/2 + ¢)-satisfying solution. [Héastad'01]
Yes for (1 — €)-satisfiable 2-SAT.

@ SDP based algorithm finds a (1 — O(y/€))-satisfying
assignment. [CMM'09]

e Tight under Unique Games Conjecture. [KKMO'07]
Yes for (1 — ¢)-satisfiable Horn-SAT
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Robust algorithms for almost satisfiable instances ||

No for (1 — €)-satisfiable LIN-mod-2.
e NP-Hard to find a (1/2 + ¢)-satisfying solution. [Héastad'01]
Yes for (1 — €)-satisfiable 2-SAT.

@ SDP based algorithm finds a (1 — O(y/€))-satisfying
assignment. [CMM'09]

e Tight under Unique Games Conjecture. [KKMO'07]
Yes for (1 — ¢)-satisfiable Horn-SAT

@ LP based algorithm finds a (1 — O(%))-satisfying

assignment. [Zwick'98]

@ For Horn-3SAT, Zwick's algorithm gives a
(1- m)—satisfying solution, losing a exponentially large
factor.

o Is it tight?
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Bounds on approximability of almost satisfiable Horn-SAT

Previously known

Horn-3SAT Horn-2SAT

_ _ 1 _
Approx. Alg. 1 O_('°g(1/€)) 13

[Zwick'98] [KSTW'00]

1 — €€ for some c < 1 1—1.36¢
NP-Hardness [KSTW'00] from Vertex Cover
1-(2—-0)e

UG-Hardness from Vertex Cover
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Bounds on approximability of almost satisfiable Horn-SAT

Our result
Horn-3SAT Horn-2SAT
_ _ 1
Approx. Alg. 1 O_('°g(1/€)) 1—2¢
[Zwick'98]
1 — €€ for some c < 1 1—1.36¢
NP-Hardness [KSTW'00] from Vertex Cover
1—-(2—-0)e
~ 1—QO(—1
UG-Hardness ('Og(l/f)) from Vertex Cover
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Bounds on approximability of almost satisfiable Horn-SAT

Our result
Horn-3SAT Horn-2SAT
_ _ 1
Approx. Alg. 1 O_('°g(1/€)) 1—2¢
[Zwick'98]
1 — €€ for some c < 1 1—1.36¢
NP-Hardness [KSTW'00] from Vertex Cover
1—-(2—-0)e
~ 1—QO(—1
UG-Hardness ('Og(l/f)) from Vertex Cover

Why rely on UGC? Isn't there a subexponential time algorithm
[ABS'10] for UGC ?

@ Even for (1 — ¢)-satisfiable 2-SAT, the NP-hardness of finding
(1 — we(1)e)-satisfying assignment is not known without
assuming UGC, — while UGC implies the optimal (1 — Q(1/€))
hardness.

@ People also trying to prove UGC these days...
[Khot-Moshkovitz'10]
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Overview

Part I.

Given a (1 — €)-satisfiable instance for Horn-2SAT, it is possible to
find a (1 — 2¢)-satisfying assignment efficiently.

Part II.

There exists absolute constant C > 0, s.t. for every ¢ > 0, given a
(1 — €)-satisfiable instance for Horn-3SAT, it is UG-hard to find a
(1- m)—satisfying assignment.
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Given a (1 — €)-satisfiable instance for Horn-2SAT, it is possible to
find a (1 — 2¢)-satisfying assignment efficiently.
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Warm up — approximation preserving reduction from

Vertex Cover to Horn-2SAT

Given a Vertex Cover instance G = (V, E),
@ Each variable x; in Horn-2SAT corresponds a vertex v; € V.
@ For each e = (v;, vj) € E, introduce a clause X; V X; of weight
IEIﬁ'
@ For each v; € V, introduce a clause x; of weight m
Observation,
@ Exists optimal solution violating no edge clause.

@ For this optimal solution, set of violated vertex clauses ~ set
of vertices chosen in optimal Vertex Cover solution.

Therefore, 1 — OPT (Horn2SAT) = OPT (Vertex Cover)/(|E| + 1).
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Warm up — approximation preserving reduction from

Vertex Cover to Horn-2SAT

Given a Vertex Cover instance G = (V, E),
@ Each variable x; in Horn-2SAT corresponds a vertex v; € V.
@ For each e = (v;, vj) € E, introduce a clause X; VV X; of weight
IEIﬁ'
@ For each v; € V, introduce a clause x; of weight m
Observation,
@ Exists optimal solution violating no edge clause.

@ For this optimal solution, set of violated vertex clauses ~ set
of vertices chosen in optimal Vertex Cover solution.

Therefore, 1 — OPT (Horn2SAT) = OPT (Vertex Cover)/(|E| + 1).
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Robust algorithm for almost-satisfiable Horn-2SAT

In Min Horn-2SAT Deletion problem, the goal is to find a subset of
clauses of minimum total weight whose deletion makes the
instance satisfiable.

We prove

There is a polynomial-time 2-approximation algorithm for Min
Horn-2SAT Deletion problem.

This directly implies

Given a (1 — €)-satisfiable instance for Horn-2SAT, it is possible to
find a (1 — 2¢)-satisfying assignment efficiently.
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Approximation algorithm for Min Horn-2SAT Deletion

Possible clauses in Horn-2SAT

@ "True constraint”: x;

o “False constraint”: Xx;

@ “Disjunction constraint”: X; V X;

e “Implication constraint”: x; — x; (equivalent to Xj V x;)
LP Formulation as follows, we have OPTyp < OPT.

min. Z W,.(T)(l —yi)+ Z W,-(F))/i + Z W,'S'D)Zi(jD) + Z W/'J('I)Z'S'I)

iev ievV i<j i#j
st. 20 >yity-1 Vi<

2 >yi—y Vi#j

z? >0 Vi< j

z) >0 Vi # j

yi  €[0,1] VieV
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Approximation algorithm for Min Horn-2SAT Deletion

Possible clauses in Horn-2SAT

@ “True constraint”: x;

o “False constraint”: X;

e “Disjunction constraint”: X; V X;

e “Implication constraint”: x; — x; (equivalent to X; VV x;)
LP Formulation as follows, we have OPTp < OPT.

min. Z W,.(T)(l —yi)+ Z W,-(F))/i + Z W,-S-D)Zi(jD) + Z WI'J('I)Z"(JI)

iev =% i<j i
s.t. z,-(jD) > max{y; +yj — 1,0} Vi<j
I ..
z,.(j) > max{y; — yj,0} Vi # j
yi  €[01] VieV
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Approximation algorithm for Min Horn-2SAT Deletion

Possible clauses in Horn-2SAT

@ “True constraint”: x;

o “False constraint”: X;

e “Disjunction constraint”: X; V X;

e “Implication constraint”: x; — x; (equivalent to X; VV x;)
LP Formulation as follows, we have OPTp < OPT.

min. ) w D - )+ > w Dy,
icVv 5 iev |
+ZW,§. )max{yi-l-yj - 170}+ZW,'J(')m3X{yi —¥,0}
i<j i#j
st. y; €[0,1] VieV
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Approximation algorithm for Min Horn-2SAT Deletion

Possible clauses in Horn-2SAT

@ “True constraint”: x;

o “False constraint”: X;

e “Disjunction constraint”: X; V X;

e “Implication constraint”: x; — x; (equivalent to X; VV x;)
LP Formulation as follows, we have OPTp < OPT.

min. Val(f) =Y w1 —y) + Y wDy,
iev iev
+ Z WiS'D) max{y; +y; — 1,0} + Z W,-J(-I) max{y; — yj,0}
< i#j
s.t. f={yi} €]o, 1]V
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Half-integrality and rounding |

Lemma

Given a solution f = {y;}, we can efficiently convert f into
f* = {y’} such that each y* € {0,1,1/2} is half-integral, and
Val(f*) < Val(f).

| \

Corollary

We can efficiently find an optimal LP solution and all the variables
in the solution are half-integral.

v

Rounding

Given an optimal LP solution f = {y;} which is half-integral,
define finy = {x;} as follows.
For each i € V, let x; = 0 when y; < 1/2, and x; = 1 when y; = 1.
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Half-integrality and rounding Il

Observation
o x; <yrand 1—x <2(1—y).
e max{x;i+x; —1,0} < max{y;+y;— 1,0} (by xi <y, x; <yj).
e max{x; — x;,0} < 2max{y; — y;,0}.
o When y; < y;,
xi < xj = max{x; — x;,0} = max{y; — y;,0} = 0.
o Wheny, >y =y —y >1/2,
max{x; — xj,0} <1 < 2max{y; — y;,0}.
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Half-integrality and rounding Il

Observation
o x; <yrand 1 —x; <2(1—y).
o max{x;+x; — 1,0} < max{y;+y; — 1,0} (by x; < yi,x; < yj).
e max{x; — xj,0} < 2max{y; — y;,0}.

Therefore,
Val(finy) = Z W,-(T)(l —xi)+ Z WI-(F)X,'
eV eV
+ Z W,-S.D) max{x; + xj — 1,0} + Z W,.S-I) max{x; — x;,0}
i<j i#j
< Z W,'(T)2(]- - }/i) + Z W,'(F))/i
iev Y%
+ Z WU(-D) max{y; +y; — 1,0} + Z W,S-I)Z max{y; — yj,0}
i<j i#j
< 2Val(f) = 20PTyp < 20PT.
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Proof of half-integrality lemma |

Given f = {y;}, construct pairs of critical points
Wr={(p,1-p):0<p<1/2,3i€V,st.p=y;V1—-p=y}.

Idea. lteratively revise f, so that Wy contains less
“non-half-integral” pairs after each iteration, while not increasing
Val(f). Done when W; contains no “non-half-integral” pair.
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Proof of half-integrality lemma |l

Wi ={(p,1=p):0<p<1/2,3i€V,st.p=y;V1-—p=y}
In each iteration. Choose a non-half-integral pair (p,1 — p) € Wk
(0 < p<1/2). Let
S={ityi=p}, S ={i:yi=1-p}.
Let a and b be the two “neighbors” of p in Wt. le., let
a=max{g<p:(q,1—q) € W0},
b=min{g>p:(q,1—q) e W 1/2}.

Define
FO =y = thies Uy =1~ t}ies Uy = Yitiev\(sus')-

Val(f(9)) is linear with t € [a, b]. l

Exists 7 € {a, b} such that Val(f(7)) < Val(f(P)) = Val(f). Update
f by £(T), we have one less non-half-integral pair (p,1 — p) in Ws.
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Proof of Claim

Val(f(t) Zev (1 y’f))+zle W( )y:(t)
+Z/<J ij max{ 9 4 (t) —1,0} + Z,# W( ) max{yi(t) — yj(t),o}

FO) = (" = thies U {y, =1 - thies Uiy = yitievysus)
Only need to prove gi(t) = max{y(t) +y(t) 1,0} and

g(t) = max{y,-(t) - yj(t ,0} are linear with t € [a, b] for any i, j.
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Proof of Claim

Val(£(9) = z,ev D=y )+ Sy wyY
+Z,<J i max{ (® 4 (t) —-1,0} + Z,# W( ) max{y,.(t) — yJ.(t),O}
O = [y = t}ies U {y, =1 thies Uy = yitievi(susy

Only need to prove gi(t) = max{y(t) (t) — 1,0} and

g(t) = max{y,-(t) - yj(t ,0} are linear Wlth t € [a, b] for any i, /.

e/, jeV\(SUS'). g and gy are constant functions.
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Proof of Claim

Va'(f(t)):Z,ev Dy )+ ey w” )y,(t)
+Z/<J ij max{ (t)+ (t) -1 0}+Z,¢J WU max{yi(t)—yj(t),o}

FO = 7 = thies U = 1 - thies U 1Y = yitiewisus)
Only need to prove gi(t) = max{y(t) (t) — 1,0} and

g(t) = max{y,-(t) - yj(t),O} are linear Wlth t € [a, b] for any i, /.
e i jeV\(SUS). v
eicV\(SUS),jeSus,

e The only “non-linear point” is t =1 — y; for g1 and t = y; for
&> — they are away from [a, b].
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Proof of Claim

Val(f ) Z:ev (1 Y, f))+2’€ W( )y,(t)
+Z/<J ij max{ 9 4 (t —1,0} + Z,# W( ) max{yi(t) — yj(t),o}

FO) = (" = thies U {y, =1 - thies Uiy = yitievysus)
Only need to prove gi(t) = max{y(t) (t) — 1,0} and

g(t) = max{y,-(t) —yj(t),O} are linear Wlth t € [a, b] for any i,j.
e i jeV\(SUS) v
e /icV\(SUS),jeSuS oriesSus,jeVv\(Sus). v
eiecS,jeS (orieS,jes).

o gi(t) = t) (t) —1=0is constant function.
e When i € 5 J € 5' () < y( ) g2(t) = 0 is constant function.
o WhenieS' jes, y,-t g(t) = (t) j(t) is linear

function of t.
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Proof of Claim

Val(£(9) = z,ev D=y )+ Sy wyY
+Z,<J i max{ (® 4 (t —-1,0} + Z,# W( ) max{y,.(t) — yJ.(t),O}
O = [y = t}ies U {y, =1 thies Uy = yitievi(susy

Only need to prove gi(t) = max{y(t) (t) — 1,0} and

g(t) = max{y,-(t) - yj(t),O} are linear Wlth t € [a, b] for any i, /.
e i, jeV\(SUS). v
e /icV\(SUS),jeSuS oriesSus,jeVv\(Sus). v
eicS jeS (ories,jes). v
e/, jeS (ori,jes).
e When i, jeS, y,t (t) < 1, g1(t) = 0 is constant function.

o Wheni,jeS, y t)—é—yj()>1 g(t)=y t)+y() 1 is linear
function of t.
o y/ =yj, thus g(t) = 0 is constant function.
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Proof of Claim

Val(f(1) :Z:ev (1 y’f))+zle W( )y:(t)
+Z/<J i max{ © + (t) — 1,0} + Z,# W( ) max{yi(t) — yj(t),o}

FO = 7 = thies U = 1 - thies U 1Y = yitiewisus)
Only need to prove gi(t) = max{y(t) (t) — 1,0} and

g(t) = max{y,-(t) —yj(t ,0} are linear Wlth t € [a, b] for any i, /.
e i jeV\(SUS). v
e /icV\(SUS),jeSuS oriesSus,jeVv\(Sus). v
eicS jeS (ories,jes). v
@i jeS(ori,jes) v
Q.E.D.
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There exists absolute constant C > 0, s.t. for every € > 0, given a
(1 — €)-satisfiable instance for Horn-3SAT, it is UG-hard to find a
(1- m)—satisfying assignment.
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Proof Method

There is a canonical SDP relaxation SDP(A) for each CSP A.
Let1>c>s>0. Acvs.s integrality gap instance for SDP(A)
= UG-hardness of (¢ — n) vs. (s +n) gap-N\ problem, for every
constant n > 0.

We prove the UG-hardness by showing

There is a (1 — 2=K)) vs. (1 — 1/k) gap instance for
SDP(Horn-3SAT), for every k > 1.

Tight Bounds on the Approximability of Almost-satisfiable Horn SAT
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The canonical SDP for Boolean CSPs |

C: The set of constraints over X = {x1,x2, -+ ,x, € {0,1}}.

For each C € C, set up a local distribution 7¢ on all
truth-assignments {0 : X¢c — {0,1}}.
@ Introduce scalar variables ¢ (o) with non-negativity
constraints and > mc(o) = 1.

A lifted LP (in Sherali-Adams system).

max. Ecec[Procr [C(o) =1]]
s.t. Pl’geﬂ-c [O’(X,') =b A O'(XJ) = b2] = X(Xi,bl),(Xj,bz)
VC e C,X,',Xj € C, by, b e {0,1}
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An example |

Instance. Clause 1 : x; A xo0 — xa, Clause 2: x3 A x4 — Xo.
Objective. Maximize

2(mi(xa, xo, xa) + T (X1, X2, xa) + 1 (31, X2, xa) + 7131, X2, Xa) +
T1(X1, %2, Xa) + m1(x1, X2, Xa) + 71(X1, X2, Xa)) + 5 (m2(x3, xa, X2) +
(X3, X4, X2) 4+ m2(X3, Xa, X2) 4+ m2(X3, Xa, X2) + m2(X3, X4, X2) +
(X3, X4, X2) + m2(X3, X2, X2))

Constraints.

m1(+, -, -) and ma(+, -, -) form distributions respectively.
m1(x1, X2, Xa) + m1(XT, X2, Xa) = T2 (X2, X3, Xa) + T2 (X2, X3, Xa) =
X(o,1), (1)

m1(x1, %2, xa) + m1(X1, X2, xa) = m2(X2, X3, Xa) + m2(X2, X3, X4) =
X(52,0),(xa,1)

m1(x1, X2, Xa) + m1 (X1, X2, Xa) = m2(x2, X3,Xa) + W2(X2,X3,X4) =
X(x2,1),(x4.,0)

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT



An example |

m1(x1,%2, Xa) + m1(X1, X2, Xa) = m2(X2, X3, Xa) + M2 (X2, X3, Xa) =
X(32,0),(x4,0)

m1(x1, x2, Xa) + 71 (X1, X2, Xa) + w1 (X1, X2, Xa) + 71 (X1, X2, Xa) =
7I'2(X2, X3, X4) + 7I'2(X2, X3, X4) + 7T2(X27 X3, 74) + 7T2(X27 X3, 74) =
X(X2,1),(X2,1)

7T1(X17 727 X4) + 771(717 727 X4) + 7T1(X17 727 74) + 7Tl(Xila 727 74)
(X2, X3, Xa) + m2(X2, X3, Xa) + m2(X2, X3, Xa) + ™2 (X2, X3, X5)
X(x2,0),(x2,0)

7T1(X17 X2, X4) + 7T].(Xila X2, X4) + 7T1(X17 727 X4) + 7T1(X717 727 X4)
772(X2a X3, X4) + 772(X2a 737 X4) + 772(725 X3, X4) + 772(725 737 X4)
X, 1),(x,1)

m1(x1, x2, Xa) + m1(X1, X2, Xa) + w1 (X1, X2, Xa) + 71 (X1, X2, Xa)
(X2, x3,Xa) + m2(x2, X3, Xa) + m2(X2, X3, Xa) + m2(X2, X3, Xa)
X(X4:0)7(X470)
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The canonical SDP for Boolean CSPs I

Add vectors. Introduce v(, o) and v, 1) corresponding to the
events x =0 and x = 1.
Constraints.

® V(,0) " V(x,1) = 0 — mutually exclusive events

® V(x,0) + V(x,1) = | — probability adds up to 1

® Procrc [o(xi) = b1 A U(XJ) = b = V(x;,b1) “ V(x;,b2)
The canonical SDP.

max.  Ecec[Proer[C(0) = 1]]

s.t. V(x,0) " V(x,1) = 0
V(x;,0) + V(x,1) = | Vi e [n]
nP?=1 Vi € [n]

Prgeﬂc [O'(X,') =b A O'(XJ) = b2] = V(x;,b1)  V(x,b)
VC € C,X,',Xj e C, by, by € {0,1}
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The canonical SDP for Boolean CSPs Il

Simplification. Define v(, 1) = vx, and v(, o) = —vx. The
canonical SDP is equivalent to

max. ECeC[P"aerC[C(U) =1]]
s.t. (I—vy) v, =0 Vi € [n]
nPZ=1 Vi € [n]

Procrc[o(xi) = 1A 0(x) = 1] = vy vy, YCEC,x,x € C
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The canonical SDP for Boolean CSPs llI

Simplification. Define v(, 1) = vx, and v(, o) = —vx. The
canonical SDP is equivalent to

max. ECeC[P"aerC[C(U) =1]]
s.t. (I—vy) v, =0 Vi € [n]
nPZ=1 Vi € [n]

Procrc[o(xi) = 1A 0(x) = 1] = vy vy, YCEC,x,x € C

The SDP is stronger than lifted LP in many cases. For 2-SAT,
lifted LP has a huge gap 1 vs. 3/4, while SDP gives the optimal

gap (1 —¢) vs. (1 - O(Ve)).
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Consider instace Z;°m™.

Step 0: X0
Step 1: Xo N\ Yo — x1
Step 2: x1Ay1 = X2
Step 3: X2 N\ Y2 — X3
Step k + 1: Xk N\ Yk — Xk+1
Step k + 2: Xki1

Yo

X0 ANYo = y1
X1AYy1L = Y2
X2 NYy2 = y3

Xk N Yk = Yk+1
Yk+1
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Consider instace Z;°m™.

Step 0:
Step 1:
Step 2:
Step 3:

Step k + 1:
Step k + 2:

Observation

X0
X0 N Yo =+ X1,
X1 Ayr — X2,
X2 \yr — X3,

Xk N Yk = Xk+1 »

Xk+1 »

Yo

X0 ANYo = y1
X1NAYy1L— Y2
X2 NYy2 = y3

Xk N Yk = Yk+1
Yk+1

T js not satisfiable. Therefore OPT(Zo™) < 1 — Q(1/k).

Venkatesan Guruswami and Yuan Zhou
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A good solution for lifted LP

Step O: X0, Yo

Step 1: XNANY— X1, X0AYo—=n
Step 2: XIAYyL = X2, X1Ay1L— Y2
Step 3: XoNYys = X3, X2Ny2—y3
Step k + 1: Xk N Yk = Xk+1 + Xk N\ Yk = Yi+1
Step k + 2: Xk+1 0 Ykt1

Observation

Clauses from two different steps share at most one variable. No
need to worry about pairwise margins.
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A good solution for lifted LP

Step 0: X0, Yo
Step 1: X NYo—>Xx1, XoNAYo—y1
Step 2: XIAY1 =X, X1Ay1— )2
Step 3: XoNY2 = X3, X2Ny2—y3
Step k + 1: Xk AN Yk = Xk41 0 Xk A\ Yk = Yk+1
Step k + 2: Xk+1 v Yk+1
loss = 26
xoA\Yo—x1(y1) ‘ mc(o)
XO(IVO) | qc_("é) InTS 1 | 1-26
0 5 oOnNl— O 1)
INO— 0 1)
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A good solution for lifted LP

Step 0: X0, Yo
Step 1: XNANYo = X1, XNAYo =WV
Step 2: XIAY1 =X, X1Ay1— )2
Step 3: XoNYys = X3, XoNy2— Y3
Step k + 1: Xk AN Yk = Xk41 0 Xk A\ Yk = Yk+1
Step k + 2: Xk+1 v Yk+1

loss = 26

x1A\y1—x2(y2) ‘ (o)

IN1— 1 1—-46
0OANl— O 20
IN0— O 20

xoA\yo—x1(y1) ‘ wc(o)
INLT— 1 1-26
oOnNl— O 1)
1AN0— O 0
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A good solution for lifted LP

Step 0: X0, Yo
Step 1: XNANYo = X1, XNAYo =WV
Step 2: XIAY1 =X, X1Ay1— )2
Step 3: XoNYys = X3, XoNy2— Y3
Step k + 1: Xk AN Yk = Xk41 0 Xk A\ Yk = Yk+1
Step k + 2: Xk+1 v Yk+1

loss = 26

x1A\y1—x2(y2) ‘ (o)

IN1— 1 1—-46
0OANl— O 20
IN0— O 20

xoA\y2—x3(y3) ‘ wc(o)

InlT— 1 1-84
0Anl— O 44
1IAN0— O 44
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A good solution for lifted LP

Step 0: X0, Yo
Step 1: X NYo—>Xx1, XoNAYo—y1
Step 2: XIAY1 =X, X1Ay1— )2
Step 3: XoNYys = X3, XoNy2— Y3
Step k + 1: Xk AN Yk = Xk41 0 Xk A\ Yk = Yk+1
Step k + 2: Xk+1 + Yk+1

loss = 26
X A\YKk—rX,

KAk Xk wc(o) xoA\y2—x3(y3) ‘ mc(o)
XAV Ykt 1Al 1 |1-80
INl— 1 [1-2F15 <.

P 0ANl— O 45

0Al= 0 20 1IN0 0 | 45
IAN0— 0 2k§
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A good solution for lifted LP

Step O: X0, Yo
Step 1: XNANYo = X1, XNAYo =WV
Step 2: XIAY1 =X, X1Ay1— )2
Step 3: XoNYys = X3, X2Ny2—y3
Step k + 1: Xk AN Yk = Xk41 0 Xk A\ Yk = Yk+1
Step k + 2: Xk+1 v Yk+1
loss = 26 + 2(1 — 2KT15)
Xk A\Yk—> Xk+1
mTc\o
Xk \YIk— Yk+1 c(@) Xk+1(Ykt1) \ mc(o)
INl— 1 [1-2K1§ = 1 1—2kHs
0Al— 0 2ks 0 2kt1s
1IAN0O— 0 2ks

Venkatesan Guruswami and Yuan Zhou
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A good solution for lifted LP

Step 0:
Step 1:
Step 2:
Step 3:

Step k + 1:
Step k + 2:

X0
Xo A Yo — X1,
X1 NA\y1— X2,
X2 \y2 = X3,

Xk N Yk — Xkl
Xk+1

Yo

X0 ANYo—=»1
X1AYy1 = Y2
X2 NYy2 = ¥3

Xk N\ Yk = Yk+1
Yk+1

loss = 20 + 2(1 — 2k+1§) = 1/2% (by choosing § = 1/2k+1) |

Xk N\YKk—rXk4+1

Xk ANYk— Y41 me(7)
1INl 1 [1-2K1§ =
0Al— 0 2k§

1A0— 0 2k§

Xer1 (V1) | we(o)
1 1—2kH1g
0 2k+15

Venkatesan Guruswami and Yuan Zhou
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Add vectors to get a good SDP solution

Problem. Is there any set of vectors corresponding to the
following distribution?

xiNyi—=xiv1(yir1) | mc(o)

IN1— 1 1-26
0Nl— 0 1)
1AN0— 0 )
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Add vectors to get a good SDP solution

Problem. Is there any set of vectors corresponding to the
following distribution?

xiNyi—=xiv1(yir1) | mc(o)

IN1— 1 1-26
0Nl— 0 1)
1AN0— 0 )

The required inner-product matrix — should be PSD.

I Vx; Vyi Vxi Vyii
| 1 1-9§ 1-6 1—-26 1-26
vy, 1-9§ 1-6 1—-25 1—-20 1-26
vy, 1-6 1-20 1—-6 1-20 1-26
Ve, |1-26 1-25 1-20 1-25
Vo, |1-20 1-26 1-26 1-26
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Add vectors to get a good SDP solution

Problem. Is there any set of vectors corresponding to the
following distribution?

xiNyi—=xiv1(yir1) | mc(o)

IN1— 1 1-26
0Nl— 0 1)
1AN0— 0 )

The required inner-product matrix — should be PSD.

I Vx; Vyi Vxi Vyii
| 1 1-9§ 1-6 1—-26 1-26
vy, 1-9§ 1-6 1—-25 1—-20 1-26
vy, 1-6 1-20 1—-6 1-20 1-26
Ve, |1-26 1-25 1-20 1-25 7
vy, |1-20 1-26 1-25 7 1-25
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Add vectors to get a good SDP solution

Problem. Is there any set of vectors corresponding to the
following distribution?

xiNyi—=xiv1(yir1) | mc(o)

IN1— 1 1-26
0Nl— 0 1)
1AN0— 0 )

The required inner-product matrix — should be PSD.

I Vx; Vy; VX Vyir

| 1 1-96 1-96 1-26 1-26
V. 1-9§ 1-6 1—-25 1—-25 1-2§
vy, 1-9 1—-25 1-96 1-26 1-26
Ve, |1-20 1-25 1-20 1-25 1-25
Vy, |1-20 1-26 1-25 1-25 1-25
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The matrix is PSD because...

1 1-6 1-§ 1-25 1-2§
1-6 1-6 1—-20 1-25 1-2§
1-6 1-26 1—-6 1-2§ 1-26
1-20 1-20 1-25 1-25 1-26
1-26 1-26 1-20 1-25 1—-26

111 1 1 2 1 1 0 0
111 1 1 11000
= (1-28)|1 1 1 1 1|46]1 0 1 0 0
111 1 1 00 00 O
111 1 1 0000 O

Bad news. This is the only way to make the matrix PSD.
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Why is that news bad?

From Step i
xiNyi—xis1(yis1) | me(o)
INL— 1 1-26
ON1l— 0 )
IN0— 0 )
to Step i +1
Xit1\Yit1—=Xiv2(Yit2) \ mc(o)
1 N1 — 1 ?
0Nl — 0 ?
1 N0 — 0 ?

Venkatesan Guruswami and Yuan Zhou
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Why is that news bad?

From Step i
xiNyi—xis1(yis1) | me(o)
INL— 1 1-26
ON1l— 0 0
IN0— 0 )

to Step i +1

Xiy1\Yir1—=Xiv2(Yit2) \ mc(o)

1 N1 — 1 1-29
0OAN1l — 0 ?
1 N0 — 0 ?

The inner-product vy, , - v, is too large — angle between two
vectors is 0.
The probability Pr[xj;2 = 1] (Pr[yi+2 = 1]) cannot decrease.

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT



Being less greedy — decrease the norm slower |

1IN1—
ONl—
1AN0—
OANO—

xiNyi—xiy1(yir1) | 7c(o)
1 1-1.26
0 0.2
0 0.2
1 0.1
0 0.70

0OAND—

The corresponding inner-product matrix.

| Vy

Vyi VXi+1 Vy:'+1

| 1 1-—
Vy, 1-6 1-—

) 1-§ 1-116 1-1.16
6 1-12) 1-12) 1-1.2%

vy, 1-6 1-1.2% 1-6 1-120 1-1.20
Vi, | 1-116 1-12) 1-12/ 1-116 1-129
vy, | 1-116 1-12) 1-12/ 1-125 1-110

Venkatesan Guruswami and Yuan Zhou
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The matrix is PSD because...

1 1—-96 1-6 1-116 1-1.16
1-946 1-6 1-12§ 1-12§ 1-1.26
1-6 1-120 1-9 1-125 1-126 | =
1-110 1-12 1-12 1-110 1-1.29
1-116 1-126 1-125 1—-125 1-—-1.146

1 1.2 02 02 01 01
02 02 0 0 0
+61 02 0 02 0 0
01 O 0.1 O
01 O 0 0 01

(1—1.26)

el
N el e
N e
e
e R N
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Being less greedy — decrease the norm slower |l

The corresponding inner-product matrix.

I in Vy,‘ VXH—l vyi+1

[ 1 1-6 1-6 1-115 1-115
v | 1-6 1-8 1-125 1-126 1-126
v, | 1-6 1-125 1-§ 1-125 1-126
Vi |1-116 1-120 1-125 1-116 1-12§
vy, |1-116 1-125 1-125 1-125 1-114

Norm: [|vu [ = vy, P =1-116 =1 —~.
Inner-product: vy, , -vy, , =1—126=1-1.09y.

Would be good if vy, , - vy, =1—1.27.
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Amplify the angle |

Start point.
Norm: HVX,'+1H2 = Hvyl'+1”2 =1- -
Inner-product: vy, -vy, , =1—(1+7)y.

Xip1\Yir1—=Xir2(Vir2) ‘ mc(o)
1Al — 1 1-(1+7)y
0AN1l — 0 Ty
1 N0 = 0 Ty
0ANO0— 1 Ty
0ANO0 — 0 (1-27)y
I in+1 v}’i+1 in+2 V.Vi+2
| 1 1—7~ 1—x 1—7~ 1—v
Vi | 17 1—vy I-(1+7)yy 1-=(1+7)y 1= (1+7)y
vy, | 1= 1—-(1+7)y 1—» 1-(1+7)y 1-(1+7)y
Vi | 1= 1—=(QQ+7)y 1-(1+7)y 1—~ 1—(1+41.57)y
Vyo, | 1=y 1—=(1+7)y 1-(1Q4+7)y 1-(1+157)y 1—v
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Amplify the angle Il

Start point.
Norm: ||in+1H2 = Hv}’i+1”2 =1- v
Inner-product: vy, -vy,., =1—(1+7)7.

Xip1A\Yir1—Xir2(Vit2) ‘ wc(o)
1Al = 1 1-(1+71)y
0Nl — 0 Ty
1 N0 — 0 T
0ANO0— 1 Ty
0AD = 0 (1-27)y
J Vxisg Vyin Vxiyo Vyiio
| 1 1—7~ 1—x 1—7~ 1—v
Viay | 17 1—vy I-(147)yy 1-=(1+7)y 1—(1+7)y
Vy, | 1=y 1—(1+7)y 1—+ 1-(1+47)y 1-(1+7)y
Vi | 1= 1—=(QQ+7)y 1-(1+7)y 1—7 1—-(1+41.57)y
Vyo, | 1=y 1—=(1+7)y 1-(Q1Q+47)y 1-(1+157)y 1—~

Result.
Norm: ||VX,'+2H2 = Hvyl'+2H2 =1-.
Inner-product: vy, - vy, =1 — (14 1.57)y.
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A two-stage block

Stage 1. Reduce the norm.

Norm: (v [2 = v, [2 = 1 &
from
Inner-product: vy, -v,, =1 —1.20
Step i
o | Norm: flv, 2 =lvy,,[F =1-116=1—~

Inner-product: vy, -vy, , =1-1.20=1—(1+7)y

Stage 2. Amplify the angle (reduce the inner-product).

from

Norm: HVX,'+1H2 = Hvyl'+1H2 =1- Y
Inner-product: vy, -vy,, , =1—(14+7)y

Stepi+1

to

Norm: [[vs,,[|* = [lvy,., [ =1 -+
Inner-product: vy, - vy, =1— (14 1.57)y

Step i+ (r —1)

to

Norm: [lv,[I* = [lvy,. 7 =1 -~
Inner-product: v, -vy,,, =1—(1+15717)y <1—1.2y
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Repeat the blocks

Suppose k = gr, let 6 =1.179/1.2.

: 2 _ 2_1_
Step 0 Norm: [[vg 12 = vy, 2 = 1 — &
Inner-product: vy, - vy, =1 — 1.2
Block 1
. 2 _ 2_1_
Step Norm: ||vy || =||vy, [ =1—-1.18
Inner-product: v, -v,, =1—-1.2-1.16
Block 2
Norm: v, | = ||vy2,|r2 —1-11%
Step 2r Inner-product: vy, - v,, =1—1.2-1.1%%
Block g
. 2 _ 2 _ 1 _ q
Step gr Norm: [[v,,, || vy 1-1.19

Inner-product: v, -v,, =1-12-1.190=0

Stepk+1=qgr+1

Norm: vy, [|* = [lvy,, [I* =0

Venkatesan Guruswami and Yuan Zhou
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Repeat the blocks

Suppose k = gr, let 6 =1.179/1.2.

Norm: [|vy,[|? = [|vy,|[> =1 -4

Step 0 Inner-product: vy, - vy, =1 — 1.2
Block 1
. 2 _ 2_1_
Step Norm: ||vy || =||vy, [ =1—-1.18
Inner-product: v, -v,, =1—-1.2-1.16
Block 2
Norm: [V, |2 = ||vy2,|r2 1-11%
Step 2r Inner-product: vy, - vy, =1-1.2-1.1%
Block g
. 2 _ 2 _ 1 _ q
Step gr Norm: [[v,,, || vy 1-1.19

Inner-product: v, -v,, =1-12-1.190=0

Stepk+1=qgr+1

Norm: vy, [|* = [lvy,, [I* =0

loss = 26 = 2~UK) only from Step 0.

Venkatesan Guruswami and Yuan Zhou
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The SDP gap

: H
Gap instace Z,°™.

Step 0: X0
Step 1: X0 A\ Yo — X1
Step 2: X1 \Ny1 — X2
Step 3: X2 N\ Yo — X3
Step k + 1: Xk N\ Yk — Xk+1
Step k + 2: Xk11

Observation

T js pot satisfiable. Therefore OPT(Z™) < 1 — Q(1/k).

Yo

XoNYo =N
X1AY1 = y2
X2 NYy2 = y3

Xk N\ Yk = Yk+1
Yk+1

OPTgspp(Zflom) > 1 — 2=K),
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[ Venkatesan Guruswami, and Yuan Zhou, Tight Bounds on the
Approximability of Almost-satisfiable Horn SAT and Exact
Hitting Set, SODA 2011 (to appear).
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