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Motivation

The only three non-trivial Boolean CSPs for which satisfiability is
polynomial time decidable. [Schaefer’78]

LIN-mod-2 – linear equations modulo 2

2-SAT

Horn-SAT – a CNF formula where each clause consists of at
most one unnegated literal

x1, x2

x1 ∨ x2 ∨ x4

x2 ∧ x4 → x5 (equivalent to x2 ∨ x4 ∨ x5)
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Robust algorithms for almost satisfiable instances I

A small ε fraction of constraints of a satisfiable instance were
corrupted by noise. Can we still find a good assignment?

Finding almost satisfying assignments

Given an instance which is (1− ε)-satisfiable, can we efficiently
find an assignment satisfying (1− f (ε)− o(1)) constraints, where
f (ε)→ 0 as ε→ 0?
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Robust algorithms for almost satisfiable instances II

No for (1− ε)-satisfiable LIN-mod-2.

NP-Hard to find a (1/2 + ε)-satisfying solution. [Håstad’01]

Yes for (1− ε)-satisfiable 2-SAT.

SDP based algorithm finds a (1− O(
√
ε))-satisfying

assignment. [CMM’09]

Tight under Unique Games Conjecture. [KKMO’07]

Yes for (1− ε)-satisfiable Horn-SAT

LP based algorithm finds a (1− O( log log(1/ε)
log(1/ε) ))-satisfying

assignment. [Zwick’98]

For Horn-3SAT, Zwick’s algorithm gives a
(1− 1

log(1/ε) )-satisfying solution, losing a exponentially large
factor.

Is it tight?
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Yes for (1− ε)-satisfiable 2-SAT.

SDP based algorithm finds a (1− O(
√
ε))-satisfying

assignment. [CMM’09]

Tight under Unique Games Conjecture. [KKMO’07]

Yes for (1− ε)-satisfiable Horn-SAT

LP based algorithm finds a (1− O( log log(1/ε)
log(1/ε) ))-satisfying

assignment. [Zwick’98]

For Horn-3SAT, Zwick’s algorithm gives a
(1− 1

log(1/ε) )-satisfying solution, losing a exponentially large
factor.

Is it tight?

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT



Bounds on approximability of almost satisfiable Horn-SAT

Previously known
Horn-3SAT Horn-2SAT

Approx. Alg.
1− O( 1

log(1/ε) ) 1− 3ε

[Zwick’98] [KSTW’00]

NP-Hardness
1− εc for some c < 1 1− 1.36ε

[KSTW’00] from Vertex Cover

UG-Hardness
1− (2− δ)ε

from Vertex Cover

Why rely on UGC? Isn’t there a subexponential time algorithm
[ABS’10] for UGC ?

Even for (1− ε)-satisfiable 2-SAT, the NP-hardness of finding
(1− ωε(1)ε)-satisfying assignment is not known without
assuming UGC, – while UGC implies the optimal (1− Ω(

√
ε))

hardness.

People also trying to prove UGC these days...
[Khot-Moshkovitz’10]
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Overview

Part I.

Theorem

Given a (1− ε)-satisfiable instance for Horn-2SAT, it is possible to
find a (1− 2ε)-satisfying assignment efficiently.

Part II.

Theorem

There exists absolute constant C > 0, s.t. for every ε > 0, given a
(1− ε)-satisfiable instance for Horn-3SAT, it is UG-hard to find a
(1− C

log(1/ε) )-satisfying assignment.

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT



Part I

Theorem

Given a (1− ε)-satisfiable instance for Horn-2SAT, it is possible to
find a (1− 2ε)-satisfying assignment efficiently.

Go to Part II...
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Warm up – approximation preserving reduction from
Vertex Cover to Horn-2SAT

Given a Vertex Cover instance G = (V ,E ),

Each variable xi in Horn-2SAT corresponds a vertex vi ∈ V .

For each e = (vi , vj) ∈ E , introduce a clause xi ∨ xj of weight
1

|E |+1 .

For each vi ∈ V , introduce a clause xi of weight 1
(|E |+1)|V | .

Observation,

Exists optimal solution violating no edge clause.

For this optimal solution, set of violated vertex clauses ∼ set
of vertices chosen in optimal Vertex Cover solution.

Therefore, 1− OPT (Horn2SAT) = OPT (Vertex Cover)/(|E |+ 1).
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Robust algorithm for almost-satisfiable Horn-2SAT

In Min Horn-2SAT Deletion problem, the goal is to find a subset of
clauses of minimum total weight whose deletion makes the
instance satisfiable.

We prove

Theorem

There is a polynomial-time 2-approximation algorithm for Min
Horn-2SAT Deletion problem.

This directly implies

Theorem

Given a (1− ε)-satisfiable instance for Horn-2SAT, it is possible to
find a (1− 2ε)-satisfying assignment efficiently.
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Approximation algorithm for Min Horn-2SAT Deletion

Possible clauses in Horn-2SAT

“True constraint”: xi

“False constraint”: xi

“Disjunction constraint”: xi ∨ xj

“Implication constraint”: xi → xj (equivalent to xi ∨ xj)

LP Formulation as follows, we have OPTLP ≤ OPT.

min.
∑
i∈V

w
(T )
i (1− yi ) +

∑
i∈V

w
(F )
i yi +

∑
i<j

w
(D)
ij z

(D)
ij +

∑
i 6=j

w
(I )
ij z

(I )
ij

s.t. z
(D)
ij ≥ yi + yj − 1 ∀i < j

z
(I )
ij ≥ yi − yj ∀i 6= j

z
(D)
ij ≥ 0 ∀i < j

z
(I )
ij ≥ 0 ∀i 6= j

yi ∈ [0, 1] ∀i ∈ V
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Approximation algorithm for Min Horn-2SAT Deletion
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LP Formulation as follows, we have OPTLP ≤ OPT.

min.
∑
i∈V

w
(T )
i (1− yi ) +

∑
i∈V

w
(F )
i yi
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w
(D)
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w
(I )
ij max{yi − yj , 0}

s.t. yi ∈ [0, 1] ∀i ∈ V

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT



Approximation algorithm for Min Horn-2SAT Deletion

Possible clauses in Horn-2SAT

“True constraint”: xi

“False constraint”: xi

“Disjunction constraint”: xi ∨ xj

“Implication constraint”: xi → xj (equivalent to xi ∨ xj)

LP Formulation as follows, we have OPTLP ≤ OPT.

min. Val(f ) =
∑
i∈V

w
(T )
i (1− yi ) +

∑
i∈V

w
(F )
i yi

+
∑
i<j

w
(D)
ij max{yi + yj − 1, 0}+

∑
i 6=j

w
(I )
ij max{yi − yj , 0}

s.t. f = {yi} ∈ [0, 1]V
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Half-integrality and rounding I

Lemma

Given a solution f = {yi}, we can efficiently convert f into
f ∗ = {y∗i } such that each y∗i ∈ {0, 1, 1/2} is half-integral, and
Val(f ∗) ≤ Val(f ).

Corollary

We can efficiently find an optimal LP solution and all the variables
in the solution are half-integral.

Rounding

Given an optimal LP solution f = {yi} which is half-integral,
define fint = {xi} as follows.
For each i ∈ V , let xi = 0 when yi ≤ 1/2, and xi = 1 when yi = 1.
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Half-integrality and rounding II

Observation

xi ≤ yi and 1− xi ≤ 2(1− yi ).

max{xi + xj − 1, 0} ≤ max{yi + yj − 1, 0} (by xi ≤ yi , xj ≤ yj).

max{xi − xj , 0} ≤ 2 max{yi − yj , 0}.
When yi ≤ yj ,
xi ≤ xj ⇒ max{xi − xj , 0} = max{yi − yj , 0} = 0.
When yi > yj ⇒ yi − yj ≥ 1/2,
max{xi − xj , 0} ≤ 1 ≤ 2 max{yi − yj , 0}.

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT



Half-integrality and rounding II

Observation

xi ≤ yi and 1− xi ≤ 2(1− yi ).

max{xi + xj − 1, 0} ≤ max{yi + yj − 1, 0} (by xi ≤ yi , xj ≤ yj).

max{xi − xj , 0} ≤ 2 max{yi − yj , 0}.
Therefore,

Val(fint) =
∑
i∈V

w
(T )
i (1− xi ) +

∑
i∈V

w
(F )
i xi

+
∑
i<j

w
(D)
ij max{xi + xj − 1, 0}+

∑
i 6=j

w
(I )
ij max{xi − xj , 0}

≤
∑
i∈V

w
(T )
i 2(1− yi ) +

∑
i∈V

w
(F )
i yi

+
∑
i<j

w
(D)
ij max{yi + yj − 1, 0}+

∑
i 6=j

w
(I )
ij 2 max{yi − yj , 0}

≤ 2Val(f ) = 2OPTLP ≤ 2OPT.
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Proof of half-integrality lemma I

Given f = {yi}, construct pairs of critical points
Wf = {(p, 1− p) : 0 ≤ p ≤ 1/2,∃i ∈ V , s.t. p = yi ∨ 1− p = yi}.

Idea. Iteratively revise f , so that Wf contains less
“non-half-integral” pairs after each iteration, while not increasing
Val(f ). Done when Wf contains no “non-half-integral” pair.
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Proof of half-integrality lemma II

Wf = {(p, 1− p) : 0 ≤ p ≤ 1/2,∃i ∈ V , s.t. p = yi ∨ 1− p = yi}
In each iteration. Choose a non-half-integral pair (p, 1− p) ∈Wf

(0 < p < 1/2). Let
S = {i : yi = p}, S ′ = {i : yi = 1− p}.

Let a and b be the two “neighbors” of p in Wf . I.e., let
a = max{q < p : (q, 1− q) ∈Wf , 0},
b = min{q > p : (q, 1− q) ∈Wf , 1/2}.

Define
f (t) = {y (t)

i = t}i∈S ∪ {y
(t)
i = 1− t}i∈S ′ ∪ {y (t)

i = yi}i∈V \(S∪S ′).

Claim

Val(f (t)) is linear with t ∈ [a, b].

Exists τ ∈ {a, b} such that Val(f (τ)) ≤ Val(f (p)) = Val(f ). Update
f by f (τ), we have one less non-half-integral pair (p, 1− p) in Wf .
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Proof of Claim

Val(f (t)) =
∑

i∈V w
(T )
i (1− y

(t)
i ) +

∑
i∈V w

(F )
i y

(t)
i

+
∑

i<j w
(D)
ij max{y (t)

i + y
(t)
j − 1, 0}+

∑
i 6=j w

(I )
ij max{y (t)

i − y
(t)
j , 0}

f (t) = {y (t)
i = t}i∈S ∪ {y

(t)
i = 1− t}i∈S ′ ∪ {y (t)

i = yi}i∈V \(S∪S ′)

Only need to prove g1(t) = max{y (t)
i + y

(t)
j − 1, 0} and

g2(t) = max{y (t)
i − y

(t)
j , 0} are linear with t ∈ [a, b] for any i , j .

i , j ∈ V \ (S ∪ S ′).

i ∈ V \ (S ∪ S ′), j ∈ S ∪ S ′,

i ∈ S , j ∈ S ′ (or i ∈ S ′, j ∈ S).

i , j ∈ S (or i , j ∈ S ′).
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g1(t) = y
(t)
i + y

(t)
j − 1 ≡ 0 is constant function.

When i ∈ S , j ∈ S ′, y
(t)
i ≤ y

(t)
j , g2(t) ≡ 0 is constant function.

When i ∈ S ′, j ∈ S , y
(t)
i ≥ y

(t)
j , g2(t) = y

(t)
i − y

(t)
j is linear

function of t.
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i ∈ S , j ∈ S ′ (or i ∈ S ′, j ∈ S). X
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When i , j ∈ S , y
(t)
i + y

(t)
j < 1, g1(t) ≡ 0 is constant function.

When i , j ∈ S ′, y
(t)
i + y

(t)
j > 1, g1(t) = y

(t)
i + y

(t)
j − 1 is linear

function of t.
y t
i = y t

j , thus g2(t) ≡ 0 is constant function.
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j , 0}

f (t) = {y (t)
i = t}i∈S ∪ {y

(t)
i = 1− t}i∈S ′ ∪ {y (t)

i = yi}i∈V \(S∪S ′)

Only need to prove g1(t) = max{y (t)
i + y

(t)
j − 1, 0} and

g2(t) = max{y (t)
i − y

(t)
j , 0} are linear with t ∈ [a, b] for any i , j .

i , j ∈ V \ (S ∪ S ′). X

i ∈ V \ (S ∪ S ′), j ∈ S ∪ S ′, or i ∈ S ∪ S ′, j ∈ V \ (S ∪ S ′). X

i ∈ S , j ∈ S ′ (or i ∈ S ′, j ∈ S). X

i , j ∈ S (or i , j ∈ S ′). X

Q.E.D.

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT



Part II

Theorem

There exists absolute constant C > 0, s.t. for every ε > 0, given a
(1− ε)-satisfiable instance for Horn-3SAT, it is UG-hard to find a
(1− C

log(1/ε) )-satisfying assignment.

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT



Proof Method

Theorem [Raghavendra’08]

There is a canonical SDP relaxation SDP(Λ) for each CSP Λ.
Let 1 > c > s > 0. A c vs. s integrality gap instance for SDP(Λ)
⇒ UG-hardness of (c − η) vs. (s + η) gap-Λ problem, for every
constant η > 0.

We prove the UG-hardness by showing

Theorem

There is a (1− 2−Ω(k)) vs. (1− 1/k) gap instance for
SDP(Horn-3SAT), for every k > 1.
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The canonical SDP for Boolean CSPs I

C: The set of constraints over X = {x1, x2, · · · , xn ∈ {0, 1}}.

For each C ∈ C, set up a local distribution πC on all
truth-assignments {σ : XC → {0, 1}}.

Introduce scalar variables πC (σ) with non-negativity
constraints and

∑
σ πC (σ) = 1.

A lifted LP (in Sherali-Adams system).

max. EC∈C[Prσ∈πC [C (σ) = 1]]

s.t. Prσ∈πC [σ(xi ) = b1 ∧ σ(xj) = b2] = X(xi ,b1),(xj ,b2)

∀C ∈ C, xi , xj ∈ C , b1, b2 ∈ {0, 1}
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An example I

Instance. Clause 1 : x1 ∧ x2 → x4, Clause 2: x3 ∧ x4 → x2.
Objective. Maximize
1
2 (π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4) +
π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4)) + 1

2 (π2(x3, x4, x2) +
π2(x3, x4, x2) + π2(x3, x4, x2) + π2(x3, x4, x2) + π2(x3, x4, x2) +
π2(x3, x4, x2) + π2(x3, x4, x2))
Constraints.
π1(·, ·, ·) and π2(·, ·, ·) form distributions respectively.
π1(x1, x2, x4) + π1(x1, x2, x4) = π2(x2, x3, x4) + π2(x2, x3, x4) =
X(x2,1),(x4,1)

π1(x1, x2, x4) + π1(x1, x2, x4) = π2(x2, x3, x4) + π2(x2, x3, x4) =
X(x2,0),(x4,1)

π1(x1, x2, x4) + π1(x1, x2, x4) = π2(x2, x3, x4) + π2(x2, x3, x4) =
X(x2,1),(x4,0)
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An example II

π1(x1, x2, x4) + π1(x1, x2, x4) = π2(x2, x3, x4) + π2(x2, x3, x4) =
X(x2,0),(x4,0)

π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4) =
π2(x2, x3, x4) + π2(x2, x3, x4) + π2(x2, x3, x4) + π2(x2, x3, x4) =
X(x2,1),(x2,1)

π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4) =
π2(x2, x3, x4) + π2(x2, x3, x4) + π2(x2, x3, x4) + π2(x2, x3, x4) =
X(x2,0),(x2,0)

π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4) =
π2(x2, x3, x4) + π2(x2, x3, x4) + π2(x2, x3, x4) + π2(x2, x3, x4) =
X(x4,1),(x4,1)

π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4) + π1(x1, x2, x4) =
π2(x2, x3, x4) + π2(x2, x3, x4) + π2(x2, x3, x4) + π2(x2, x3, x4) =
X(x4,0),(x4,0)
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The canonical SDP for Boolean CSPs II

Add vectors. Introduce v(x ,0) and v(x ,1) corresponding to the
events x = 0 and x = 1.
Constraints.

v(x ,0) · v(x ,1) = 0 – mutually exclusive events

v(x ,0) + v(x ,1) = I – probability adds up to 1

Prσ∈πC [σ(xi ) = b1 ∧ σ(xj) = b2] = v(xi ,b1) · v(xj ,b2)

The canonical SDP.

max. EC∈C[Prσ∈πC [C (σ) = 1]]

s.t. v(xi ,0) · v(xi ,1) = 0

v(xi ,0) + v(xi ,1) = I ∀i ∈ [n]

‖I‖2 = 1 ∀i ∈ [n]

Prσ∈πC [σ(xi ) = b1 ∧ σ(xj) = b2] = v(xi ,b1) · v(xj ,b2)

∀C ∈ C, xi , xj ∈ C , b1, b2 ∈ {0, 1}
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The canonical SDP for Boolean CSPs III

Simplification. Define v(x ,1) = vx , and v(x ,0) = I− vx . The
canonical SDP is equivalent to

max. EC∈C[Prσ∈πC [C (σ) = 1]]

s.t. (I− vxi ) · vxi = 0 ∀i ∈ [n]

‖I‖2 = 1 ∀i ∈ [n]

Prσ∈πC [σ(xi ) = 1 ∧ σ(xj) = 1] = vxi · vxj ∀C ∈ C, xi , xj ∈ C

Comment

The SDP is stronger than lifted LP in many cases. For 2-SAT,
lifted LP has a huge gap 1 vs. 3/4, while SDP gives the optimal
gap (1− ε) vs. (1− O(

√
ε)).
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Comment
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lifted LP has a huge gap 1 vs. 3/4, while SDP gives the optimal
gap (1− ε) vs. (1− O(

√
ε)).
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Gap instance

Consider instace IHorn
k .

Step 0: x0 , y0

Step 1: x0 ∧ y0 → x1 , x0 ∧ y0 → y1

Step 2: x1 ∧ y1 → x2 , x1 ∧ y1 → y2

Step 3: x2 ∧ y2 → x3 , x2 ∧ y2 → y3

· · ·
Step k + 1: xk ∧ yk → xk+1 , xk ∧ yk → yk+1

Step k + 2: xk+1 , yk+1

Observation

IHorn
k is not satisfiable. Therefore OPT(IHorn

k ) ≤ 1− Ω(1/k).
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A good solution for lifted LP

Step 0: x0 , y0

Step 1: x0 ∧ y0 → x1 , x0 ∧ y0 → y1

Step 2: x1 ∧ y1 → x2 , x1 ∧ y1 → y2

Step 3: x2 ∧ y2 → x3 , x2 ∧ y2 → y3

· · ·
Step k + 1: xk ∧ yk → xk+1 , xk ∧ yk → yk+1

Step k + 2: xk+1 , yk+1

Observation

Clauses from two different steps share at most one variable. No
need to worry about pairwise margins.
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A good solution for lifted LP

Step 0: x0 , y0

Step 1: x0 ∧ y0 → x1 , x0 ∧ y0 → y1

Step 2: x1 ∧ y1 → x2 , x1 ∧ y1 → y2

Step 3: x2 ∧ y2 → x3 , x2 ∧ y2 → y3

· · ·
Step k + 1: xk ∧ yk → xk+1 , xk ∧ yk → yk+1

Step k + 2: xk+1 , yk+1

loss = 2δ

+ 2(1− 2k+1δ) = 1/2k (by choosing δ = 1/2k+1) .

x0(y0) πC (σ)

1 1− δ
0 δ

⇒

x0∧y0→x1(y1) πC (σ)

1∧ 1→ 1 1− 2δ
0∧ 1→ 0 δ
1∧ 0→ 0 δ
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A good solution for lifted LP

Step 0: x0 , y0

Step 1: x0 ∧ y0 → x1 , x0 ∧ y0 → y1

Step 2: x1 ∧ y1 → x2 , x1 ∧ y1 → y2

Step 3: x2 ∧ y2 → x3 , x2 ∧ y2 → y3

· · ·
Step k + 1: xk ∧ yk → xk+1 , xk ∧ yk → yk+1

Step k + 2: xk+1 , yk+1

loss = 2δ

+ 2(1− 2k+1δ) = 1/2k (by choosing δ = 1/2k+1) .

x1∧y1→x2(y2) πC (σ)

1∧ 1→ 1 1− 4δ
0∧ 1→ 0 2δ
1∧ 0→ 0 2δ

⇐

x0∧y0→x1(y1) πC (σ)

1∧ 1→ 1 1− 2δ
0∧ 1→ 0 δ
1∧ 0→ 0 δ
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A good solution for lifted LP

Step 0: x0 , y0

Step 1: x0 ∧ y0 → x1 , x0 ∧ y0 → y1

Step 2: x1 ∧ y1 → x2 , x1 ∧ y1 → y2

Step 3: x2 ∧ y2 → x3 , x2 ∧ y2 → y3

· · ·
Step k + 1: xk ∧ yk → xk+1 , xk ∧ yk → yk+1

Step k + 2: xk+1 , yk+1

loss = 2δ

+ 2(1− 2k+1δ) = 1/2k (by choosing δ = 1/2k+1) .

x1∧y1→x2(y2) πC (σ)

1∧ 1→ 1 1− 4δ
0∧ 1→ 0 2δ
1∧ 0→ 0 2δ

⇒

x2∧y2→x3(y3) πC (σ)

1∧ 1→ 1 1− 8δ
0∧ 1→ 0 4δ
1∧ 0→ 0 4δ
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A good solution for lifted LP

Step 0: x0 , y0

Step 1: x0 ∧ y0 → x1 , x0 ∧ y0 → y1

Step 2: x1 ∧ y1 → x2 , x1 ∧ y1 → y2

Step 3: x2 ∧ y2 → x3 , x2 ∧ y2 → y3

· · ·
Step k + 1: xk ∧ yk → xk+1 , xk ∧ yk → yk+1

Step k + 2: xk+1 , yk+1

loss = 2δ

+ 2(1− 2k+1δ) = 1/2k (by choosing δ = 1/2k+1) .

xk∧yk→xk+1 πC (σ)
xk∧yk→yk+1

1 ∧ 1→ 1 1− 2k+1δ
0 ∧ 1→ 0 2kδ
1 ∧ 0→ 0 2kδ

⇐ · · ·

x2∧y2→x3(y3) πC (σ)

1∧ 1→ 1 1− 8δ
0∧ 1→ 0 4δ
1∧ 0→ 0 4δ
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A good solution for lifted LP

Step 0: x0 , y0

Step 1: x0 ∧ y0 → x1 , x0 ∧ y0 → y1

Step 2: x1 ∧ y1 → x2 , x1 ∧ y1 → y2

Step 3: x2 ∧ y2 → x3 , x2 ∧ y2 → y3

· · ·
Step k + 1: xk ∧ yk → xk+1 , xk ∧ yk → yk+1

Step k + 2: xk+1 , yk+1

loss = 2δ + 2(1− 2k+1δ)

= 1/2k (by choosing δ = 1/2k+1) .

xk∧yk→xk+1 πC (σ)
xk∧yk→yk+1

1 ∧ 1→ 1 1− 2k+1δ
0 ∧ 1→ 0 2kδ
1 ∧ 0→ 0 2kδ

⇒
xk+1(yk+1) πC (σ)

1 1− 2k+1δ
0 2k+1δ
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A good solution for lifted LP

Step 0: x0 , y0

Step 1: x0 ∧ y0 → x1 , x0 ∧ y0 → y1

Step 2: x1 ∧ y1 → x2 , x1 ∧ y1 → y2

Step 3: x2 ∧ y2 → x3 , x2 ∧ y2 → y3

· · ·
Step k + 1: xk ∧ yk → xk+1 , xk ∧ yk → yk+1

Step k + 2: xk+1 , yk+1

loss = 2δ + 2(1− 2k+1δ) = 1/2k (by choosing δ = 1/2k+1) .

xk∧yk→xk+1 πC (σ)
xk∧yk→yk+1

1 ∧ 1→ 1 1− 2k+1δ
0 ∧ 1→ 0 2kδ
1 ∧ 0→ 0 2kδ

⇒
xk+1(yk+1) πC (σ)

1 1− 2k+1δ
0 2k+1δ
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Add vectors to get a good SDP solution

Problem. Is there any set of vectors corresponding to the
following distribution?

xi∧yi→xi+1(yi+1) πC (σ)

1∧1→ 1 1− 2δ
0∧1→ 0 δ
1∧0→ 0 δ

The required inner-product matrix – should be PSD.

I vxi vyi vxi+1 vyi+1

I 1 1− δ 1− δ 1− 2δ 1− 2δ
vxi 1− δ 1− δ 1− 2δ 1− 2δ 1− 2δ
vyi 1− δ 1− 2δ 1− δ 1− 2δ 1− 2δ

vxi+1 1− 2δ 1− 2δ 1− 2δ 1− 2δ
vyi+1 1− 2δ 1− 2δ 1− 2δ 1− 2δ
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Add vectors to get a good SDP solution

Problem. Is there any set of vectors corresponding to the
following distribution?

xi∧yi→xi+1(yi+1) πC (σ)

1∧1→ 1 1− 2δ
0∧1→ 0 δ
1∧0→ 0 δ

The required inner-product matrix – should be PSD.
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vxi 1− δ 1− δ 1− 2δ 1− 2δ 1− 2δ
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Add vectors to get a good SDP solution

Problem. Is there any set of vectors corresponding to the
following distribution?

xi∧yi→xi+1(yi+1) πC (σ)

1∧1→ 1 1− 2δ
0∧1→ 0 δ
1∧0→ 0 δ

The required inner-product matrix – should be PSD.
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The matrix is PSD because...


1 1− δ 1− δ 1− 2δ 1− 2δ

1− δ 1− δ 1− 2δ 1− 2δ 1− 2δ
1− δ 1− 2δ 1− δ 1− 2δ 1− 2δ

1− 2δ 1− 2δ 1− 2δ 1− 2δ 1− 2δ
1− 2δ 1− 2δ 1− 2δ 1− 2δ 1− 2δ



= (1− 2δ)


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 + δ


2 1 1 0 0
1 1 0 0 0
1 0 1 0 0
0 0 0 0 0
0 0 0 0 0


Bad news. This is the only way to make the matrix PSD.
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Why is that news bad?

From Step i

xi∧yi→xi+1(yi+1) πC (σ)

1∧1→ 1 1− 2δ
0∧1→ 0 δ
1∧0→ 0 δ

to Step i + 1

xi+1∧yi+1→xi+2(yi+2) πC (σ)

1 ∧ 1 → 1 ?
0 ∧ 1 → 0 ?
1 ∧ 0 → 0 ?

The inner-product vxi+1 · vyi+1 is too large – angle between two
vectors is 0.
The probability Pr[xi+2 = 1] (Pr[yi+2 = 1]) cannot decrease.
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Being less greedy – decrease the norm slower I

xi∧yi→xi+1(yi+1) πC (σ)

1∧1→ 1 1− 1.2δ
0∧1→ 0 0.2δ
1∧0→ 0 0.2δ
0∧0→ 1 0.1δ
0∧0→ 0 0.7δ

The corresponding inner-product matrix.

I vxi vyi vxi+1 vyi+1

I 1 1− δ 1− δ 1− 1.1δ 1− 1.1δ
vxi 1− δ 1− δ 1− 1.2δ 1− 1.2δ 1− 1.2δ
vyi 1− δ 1− 1.2δ 1− δ 1− 1.2δ 1− 1.2δ

vxi+1 1− 1.1δ 1− 1.2δ 1− 1.2δ 1− 1.1δ 1− 1.2δ
vyi+1 1− 1.1δ 1− 1.2δ 1− 1.2δ 1− 1.2δ 1− 1.1δ

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT



The matrix is PSD because...


1 1− δ 1− δ 1− 1.1δ 1− 1.1δ

1− δ 1− δ 1− 1.2δ 1− 1.2δ 1− 1.2δ
1− δ 1− 1.2δ 1− δ 1− 1.2δ 1− 1.2δ

1− 1.1δ 1− 1.2δ 1− 1.2δ 1− 1.1δ 1− 1.2δ
1− 1.1δ 1− 1.2δ 1− 1.2δ 1− 1.2δ 1− 1.1δ

 =

(1− 1.2δ)


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 + δ


1.2 0.2 0.2 0.1 0.1
0.2 0.2 0 0 0
0.2 0 0.2 0 0
0.1 0 0.1 0
0.1 0 0 0 0.1


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Being less greedy – decrease the norm slower II

The corresponding inner-product matrix.

I vxi vyi vxi+1 vyi+1

I 1 1− δ 1− δ 1− 1.1δ 1− 1.1δ
vxi 1− δ 1− δ 1− 1.2δ 1− 1.2δ 1− 1.2δ
vyi 1− δ 1− 1.2δ 1− δ 1− 1.2δ 1− 1.2δ

vxi+1 1− 1.1δ 1− 1.2δ 1− 1.2δ 1− 1.1δ 1− 1.2δ
vyi+1 1− 1.1δ 1− 1.2δ 1− 1.2δ 1− 1.2δ 1− 1.1δ

Norm: ‖vxi+1‖2 = ‖vyi+1‖2 = 1− 1.1δ = 1− γ.
Inner-product: vxi+1 · vyi+1 = 1− 1.2δ = 1− 1.09γ.

Would be good if vxi+1 · vyi+1 = 1− 1.2γ.
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Amplify the angle I

Start point.
Norm: ‖vxi+1‖2 = ‖vyi+1‖2 = 1− γ.
Inner-product: vxi+1 · vyi+1 = 1− (1 + τ)γ.

xi+1∧yi+1→xi+2(yi+2) πC (σ)

1 ∧ 1 → 1 1− (1 + τ)γ
0 ∧ 1 → 0 τγ
1 ∧ 0 → 0 τγ
0 ∧ 0 → 1 τγ
0 ∧ 0 → 0 (1− 2τ)γ

I vxi+1 vyi+1 vxi+2 vyi+2

I 1 1− γ 1− γ 1− γ 1− γ
vxi+1 1− γ 1− γ 1− (1 + τ)γ 1− (1 + τ)γ 1− (1 + τ)γ
vyi+1 1− γ 1− (1 + τ)γ 1− γ 1− (1 + τ)γ 1− (1 + τ)γ
vxi+2 1− γ 1− (1 + τ)γ 1− (1 + τ)γ 1− γ 1− (1 + 1.5τ)γ
vyi+2 1− γ 1− (1 + τ)γ 1− (1 + τ)γ 1− (1 + 1.5τ)γ 1− γ
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The matrix is PSD because...


1 1− γ 1− γ 1− γ 1− γ

1− γ 1− γ 1− (1 + τ)γ 1− (1 + τ)γ 1− (1 + τ)γ
1− γ 1− (1 + τ)γ 1− γ 1− (1 + τ)γ 1− (1 + τ)γ
1− γ 1− (1 + τ)γ 1− (1 + τ)γ 1− γ 1− (1 + 1.5τ)γ
1− γ 1− (1 + τ)γ 1− (1 + τ)γ 1− (1 + 1.5τ)γ 1− γ

 =

(1− (1 + τ)γ)


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 + γ


1 + τ τ τ τ τ
τ τ 0 0 0
τ 0 τ 0 0
τ 0 0 τ −0.5τ
τ 0 0 −0.5τ τ


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Where...


1 + τ τ τ τ τ
τ τ 0 0 0
τ 0 τ 0 0
τ 0 0 τ −0.5τ
τ 0 0 −0.5τ τ

 =


2τ τ τ 0 0
τ τ 0 0 0
τ 0 τ 0 0
0 0 0 0 0
0 0 0 0 0



+


2τ 0 0 τ 0
0 0 0 0 0
0 0 0 0 0
τ 0 0 0.5τ 0
0 0 0 0 0

 +


2τ 0 0 0 τ
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
τ 0 0 0 0.5τ



+


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0.5τ −0.5τ
0 0 0 −0.5τ 0.5τ

 +


1− 5τ 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


is PSD when 0 ≤ τ ≤ 0.2.
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Amplify the angle II

Start point.
Norm: ‖vxi+1‖2 = ‖vyi+1‖2 = 1− γ.
Inner-product: vxi+1 · vyi+1 = 1− (1 + τ)γ.

xi+1∧yi+1→xi+2(yi+2) πC (σ)

1 ∧ 1 → 1 1− (1 + τ)γ
0 ∧ 1 → 0 τγ
1 ∧ 0 → 0 τγ
0 ∧ 0 → 1 τγ
0 ∧ 0 → 0 (1− 2τ)γ

I vxi+1 vyi+1 vxi+2 vyi+2

I 1 1− γ 1− γ 1− γ 1− γ
vxi+1 1− γ 1− γ 1− (1 + τ)γ 1− (1 + τ)γ 1− (1 + τ)γ
vyi+1 1− γ 1− (1 + τ)γ 1− γ 1− (1 + τ)γ 1− (1 + τ)γ
vxi+2 1− γ 1− (1 + τ)γ 1− (1 + τ)γ 1− γ 1− (1 + 1.5τ)γ
vyi+2 1− γ 1− (1 + τ)γ 1− (1 + τ)γ 1− (1 + 1.5τ)γ 1− γ

Result.
Norm: ‖vxi+2‖2 = ‖vyi+2‖2 = 1− γ.
Inner-product: vxi+2 · vyi+2 = 1− (1 + 1.5τ)γ.
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A two-stage block

Stage 1. Reduce the norm.

from
Norm: ‖vxi‖2 = ‖vyi‖2 = 1− δ
Inner-product: vxi · vyi = 1− 1.2δ

Step i

to
Norm: ‖vxi+1‖2 = ‖vyi+1‖2 = 1− 1.1δ = 1− γ
Inner-product: vxi+1 · vyi+1 = 1− 1.2δ = 1− (1 + τ)γ

Stage 2. Amplify the angle (reduce the inner-product).

from
Norm: ‖vxi+1‖2 = ‖vyi+1‖2 = 1− γ
Inner-product: vxi+1 · vyi+1 = 1− (1 + τ)γ

Step i + 1

to
Norm: ‖vxi+2‖2 = ‖vyi+2‖2 = 1− γ
Inner-product: vxi+2 · vyi+2 = 1− (1 + 1.5τ)γ

· · · · · ·
Step i + (r − 1)

to
Norm: ‖vxi+r ‖2 = ‖vyi+r ‖2 = 1− γ
Inner-product: vxi+r · vyi+r = 1− (1 + 1.5r−1τ)γ < 1− 1.2γ
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Repeat the blocks

Suppose k = qr , let δ = 1.1−q/1.2.

Step 0
Norm: ‖vx0‖2 = ‖vy0‖2 = 1− δ
Inner-product: vx0 · vy0 = 1− 1.2δ

Block 1

Step r
Norm: ‖vxr ‖2 = ‖vyr ‖2 = 1− 1.1δ
Inner-product: vxr · vyr = 1− 1.2 · 1.1δ

Block 2

Step 2r
Norm: ‖vx2r ‖2 = ‖vy2r ‖2 = 1− 1.12δ
Inner-product: vx2r · vy2r = 1− 1.2 · 1.12δ

· · · · · ·
Block q

Step qr
Norm: ‖vxqr ‖2 = ‖vyqr ‖2 = 1− 1.1qδ
Inner-product: vxqr · vyqr = 1− 1.2 · 1.1qδ = 0

Step k + 1 = qr + 1 Norm: ‖vxk+1
‖2 = ‖vyk+1

‖2 = 0

loss = 2δ = 2−Ω(k) only from Step 0.
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The SDP gap

Gap instace IHorn
k .

Step 0: x0 , y0

Step 1: x0 ∧ y0 → x1 , x0 ∧ y0 → y1

Step 2: x1 ∧ y1 → x2 , x1 ∧ y1 → y2

Step 3: x2 ∧ y2 → x3 , x2 ∧ y2 → y3

· · ·
Step k + 1: xk ∧ yk → xk+1 , xk ∧ yk → yk+1

Step k + 2: xk+1 , yk+1

Observation

IHorn
k is not satisfiable. Therefore OPT(IHorn

k ) ≤ 1− Ω(1/k).

Lemma

OPTSDP(IHorn
k ) ≥ 1− 2−Ω(k).
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Thank you

Questions?
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