Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

Venkatesan Guruswami Yuan Zhou Computer Science Department Carnegie Mellon University

December 8, 2010

The only three non-trivial Boolean CSPs for which satisfiability is polynomial time decidable. [Schaefer'78]

- LIN-mod-2 linear equations modulo 2
- 2-SAT
- Horn-SAT a CNF formula where each clause consists of at most one unnegated literal
 - *x*₁, *x*₂
 - $\overline{x_1} \vee \overline{x_2} \vee \overline{x_4}$
 - $x_2 \wedge x_4 \rightarrow x_5$ (equivalent to $\overline{x_2} \vee \overline{x_4} \vee x_5$)

A small ϵ fraction of constraints of a satisfiable instance were corrupted by noise. Can we still find a good assignment?

Finding almost satisfying assignments

Given an instance which is $(1 - \epsilon)$ -satisfiable, can we efficiently find an assignment satisfying $(1 - f(\epsilon) - o(1))$ constraints, where $f(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$?

No for $(1 - \epsilon)$ -satisfiable LIN-mod-2.

Yes for $(1 - \epsilon)$ -satisfiable 2-SAT.

Yes for $(1 - \epsilon)$ -satisfiable Horn-SAT

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

3 N 4 3 N

No for $(1 - \epsilon)$ -satisfiable LIN-mod-2.

• NP-Hard to find a $(1/2 + \epsilon)$ -satisfying solution. [Håstad'01] Yes for $(1 - \epsilon)$ -satisfiable 2-SAT.

Yes for $(1 - \epsilon)$ -satisfiable Horn-SAT

No for $(1 - \epsilon)$ -satisfiable LIN-mod-2.

• NP-Hard to find a $(1/2 + \epsilon)$ -satisfying solution. [Håstad'01]

Yes for $(1 - \epsilon)$ -satisfiable 2-SAT.

- SDP based algorithm finds a $(1 O(\sqrt{\epsilon}))$ -satisfying assignment. [CMM'09]
- Tight under Unique Games Conjecture. [KKMO'07]

Yes for $(1-\epsilon)$ -satisfiable Horn-SAT

No for $(1 - \epsilon)$ -satisfiable LIN-mod-2.

• NP-Hard to find a $(1/2 + \epsilon)$ -satisfying solution. [Håstad'01]

Yes for $(1 - \epsilon)$ -satisfiable 2-SAT.

- SDP based algorithm finds a $(1 O(\sqrt{\epsilon}))$ -satisfying assignment. [CMM'09]
- Tight under Unique Games Conjecture. [KKMO'07]

Yes for $(1-\epsilon)$ -satisfiable Horn-SAT

- LP based algorithm finds a (1 O(log log(1/e) / log(1/e)))-satisfying assignment. [Zwick'98]
- For Horn-3SAT, Zwick's algorithm gives a $(1 \frac{1}{\log(1/\epsilon)})$ -satisfying solution, losing a exponentially large factor.
- Is it tight?

伺い イラト イラト ニラ

Bounds on approximability of almost satisfiable Horn-SAT

Previously known

	Horn-3SAT	Horn-2SAT
Approx. Alg.	$1 - O(rac{1}{\log(1/\epsilon)})$	$1-3\epsilon$
	[Zwick'98]	[KSTW'00]
NP-Hardness	$1-\epsilon^c$ for some $c<1$	$1-1.36\epsilon$
	[KSTW'00]	from Vertex Cover
UG-Hardness		$1-(2-\delta)\epsilon$
		from Vertex Cover

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

Bounds on approximability of almost satisfiable Horn-SAT

Our result

	Horn-3SAT	Horn-2SAT
Approx. Alg.	$1 - O(rac{1}{\log(1/\epsilon)}) \ [extsf{Zwick'98}]$	$1-2\epsilon$
NP-Hardness	$1 - \epsilon^c$ for some $c < 1$ [KSTW'00]	$1-1.36\epsilon$ from Vertex Cover
UG-Hardness	$1 - \Omega(rac{1}{\log(1/\epsilon)})$	$1-(2-\delta)\epsilon$ from Vertex Cover

Bounds on approximability of almost satisfiable Horn-SAT

Our result

	Horn-3SAT	Horn-2SAT
Approx. Alg.	$1 - O(rac{1}{\log(1/\epsilon)}) \ [extsf{Zwick'98}]$	$1-2\epsilon$
NP-Hardness	$1-\epsilon^c$ for some $c<1$	$1-1.36\epsilon$
	[KSTW'00]	from Vertex Cover
UG-Hardness	$1 - \Omega(rac{1}{\log(1/\epsilon)})$	$1-(2-\delta)\epsilon$
		from Vertex Cover

Why rely on UGC? Isn't there a subexponential time algorithm [ABS'10] for UGC ?

- Even for (1ϵ) -satisfiable 2-SAT, the NP-hardness of finding $(1 \omega_{\epsilon}(1)\epsilon)$ -satisfying assignment is not known without assuming UGC, while UGC implies the optimal $(1 \Omega(\sqrt{\epsilon}))$ hardness.
- People also trying to prove UGC these days...
 [Khot-Moshkovitz'10]

Part I.

Theorem

Given a $(1 - \epsilon)$ -satisfiable instance for Horn-2SAT, it is possible to find a $(1 - 2\epsilon)$ -satisfying assignment efficiently.

Part II.

Theorem

There exists absolute constant C > 0, s.t. for every $\epsilon > 0$, given a $(1 - \epsilon)$ -satisfiable instance for Horn-3SAT, it is UG-hard to find a $(1 - \frac{C}{\log(1/\epsilon)})$ -satisfying assignment.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

Given a $(1 - \epsilon)$ -satisfiable instance for Horn-2SAT, it is possible to find a $(1 - 2\epsilon)$ -satisfying assignment efficiently.

▶ Go to Part II...

伺 ト く ヨ ト く ヨ ト

э

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

Warm up – approximation preserving reduction from Vertex Cover to Horn-2SAT

Given a Vertex Cover instance G = (V, E),

- Each variable x_i in Horn-2SAT corresponds a vertex $v_i \in V$.
- For each $e = (v_i, v_j) \in E$, introduce a clause $\overline{x_i} \vee \overline{x_j}$ of weight $\frac{1}{|E|+1}$.

For each v_i ∈ V, introduce a clause x_i of weight 1/(|E|+1)|V|.
 Observation,

- Exists optimal solution violating no edge clause.
- $\bullet\,$ For this optimal solution, set of violated vertex clauses $\sim\,$ set of vertices chosen in optimal Vertex Cover solution.

Therefore, 1 - OPT(Horn2SAT) = OPT(Vertex Cover)/(|E| + 1).

Warm up – approximation preserving reduction from Vertex Cover to Horn-2SAT

Given a Vertex Cover instance G = (V, E),

- Each variable x_i in Horn-2SAT corresponds a vertex $v_i \in V$.
- For each $e = (v_i, v_j) \in E$, introduce a clause $\overline{x_i} \lor \overline{x_j}$ of weight $\frac{1}{|E|+1}$.

For each v_i ∈ V, introduce a clause x_i of weight 1/(|E|+1)|V|.
 Observation,

- Exists optimal solution violating no edge clause.
- For this optimal solution, set of violated vertex clauses \sim set of vertices chosen in optimal Vertex Cover solution.

Therefore, 1 - OPT(Horn2SAT) = OPT(Vertex Cover)/(|E| + 1).

In Min Horn-2SAT Deletion problem, the goal is to find a subset of clauses of minimum total weight whose deletion makes the instance satisfiable.

We prove

Theorem

There is a polynomial-time 2-approximation algorithm for Min Horn-2SAT Deletion *problem.*

This directly implies

Theorem

Given a $(1 - \epsilon)$ -satisfiable instance for Horn-2SAT, it is possible to find a $(1 - 2\epsilon)$ -satisfying assignment efficiently.

Possible clauses in Horn-2SAT

- "True constraint": x_i
- "False constraint": $\overline{x_i}$
- "Disjunction constraint": $\overline{x_i} \lor \overline{x_j}$
- "Implication constraint": $x_i \rightarrow x_j$ (equivalent to $\overline{x_i} \lor x_j$)

LP Formulation as follows, we have $OPT_{LP} \leq OPT$.

$$\begin{array}{ll} \text{min.} & \sum_{i \in V} w_i^{(T)} (1 - y_i) + \sum_{i \in V} w_i^{(F)} y_i + \sum_{i < j} w_{ij}^{(D)} z_{ij}^{(D)} + \sum_{i \neq j} w_{ij}^{(I)} z_{ij}^{(I)} \\ \text{s.t.} & z_{ij}^{(D)} & \ge y_i + y_j - 1 \quad \forall i < j \\ & z_{ij}^{(I)} & \ge y_i - y_j \quad \forall i \neq j \\ & z_{ij}^{(D)} & \ge 0 \quad \forall i < j \\ & z_{ij}^{(I)} & \ge 0 \quad \forall i \neq j \\ & y_i & \in [0, 1] \quad \forall i \in V \end{array}$$

Possible clauses in Horn-2SAT

- "True constraint": x_i
- "False constraint": $\overline{x_i}$
- "Disjunction constraint": $\overline{x_i} \vee \overline{x_j}$
- "Implication constraint": $x_i \rightarrow x_j$ (equivalent to $\overline{x_i} \lor x_j$)

LP Formulation as follows, we have $OPT_{LP} \leq OPT$.

$$\begin{array}{ll} \text{min.} & \sum_{i \in V} w_i^{(T)} (1 - y_i) + \sum_{i \in V} w_i^{(F)} y_i + \sum_{i < j} w_{ij}^{(D)} z_{ij}^{(D)} + \sum_{i \neq j} w_{ij}^{(I)} z_{ij}^{(I)} \\ \text{s.t.} & z_{ij}^{(D)} & \geq \max\{y_i + y_j - 1, 0\} \quad \forall i < j \\ & z_{ij}^{(I)} & \geq \max\{y_i - y_j, 0\} \quad \forall i \neq j \\ & y_i & \in [0, 1] \quad \forall i \in V \end{array}$$

Possible clauses in Horn-2SAT

- "True constraint": x_i
- "False constraint": $\overline{x_i}$
- "Disjunction constraint": $\overline{x_i} \vee \overline{x_j}$
- "Implication constraint": $x_i \rightarrow x_j$ (equivalent to $\overline{x_i} \lor x_j$)

LP Formulation as follows, we have $OPT_{LP} \le OPT$.

$$\begin{array}{ll} \min & & \sum_{i \in V} w_i^{(T)} (1 - y_i) + \sum_{i \in V} w_i^{(F)} y_i \\ & & + \sum_{i < j} w_{ij}^{(D)} \max\{y_i + y_j - 1, 0\} + \sum_{i \neq j} w_{ij}^{(I)} \max\{y_i - y_j, 0\} \\ \text{s.t.} & & y_i \quad \in [0, 1] \quad \forall i \in V \end{array}$$

Possible clauses in Horn-2SAT

- "True constraint": x_i
- "False constraint": $\overline{x_i}$
- "Disjunction constraint": $\overline{x_i} \vee \overline{x_j}$
- "Implication constraint": $x_i \to x_j$ (equivalent to $\overline{x_i} \lor x_j$)

LP Formulation as follows, we have $OPT_{LP} \leq OPT$.

min.
$$\operatorname{Val}(f) = \sum_{i \in V} w_i^{(T)} (1 - y_i) + \sum_{i \in V} w_i^{(F)} y_i$$

 $+ \sum_{i < j} w_{ij}^{(D)} \max\{y_i + y_j - 1, 0\} + \sum_{i \neq j} w_{ij}^{(I)} \max\{y_i - y_j, 0\}$
s.t. $f = \{y_i\} \in [0, 1]^V$

Lemma

Given a solution $f = \{y_i\}$, we can efficiently convert f into $f^* = \{y_i^*\}$ such that each $y_i^* \in \{0, 1, 1/2\}$ is half-integral, and $Val(f^*) \leq Val(f)$.

Corollary

We can efficiently find an optimal LP solution and all the variables in the solution are half-integral.

Rounding

Given an optimal LP solution $f = \{y_i\}$ which is half-integral, define $f_{int} = \{x_i\}$ as follows. For each $i \in V$, let $x_i = 0$ when $y_i \le 1/2$, and $x_i = 1$ when $y_i = 1$.

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

Half-integrality and rounding II

Observation

- $x_i \leq y_i$ and $1 x_i \leq 2(1 y_i)$.
- $\max\{x_i + x_j 1, 0\} \le \max\{y_i + y_j 1, 0\}$ (by $x_i \le y_i, x_j \le y_j$).
- $\max\{x_i x_j, 0\} \le 2 \max\{y_i y_j, 0\}.$
 - When y_i ≤ y_j, x_i ≤ x_j ⇒ max{x_i - x_j, 0} = max{y_i - y_j, 0} = 0.
 When y_i > y_j ⇒ y_i - y_j ≥ 1/2, max{x_i - x_i, 0} ≤ 1 ≤ 2 max{y_i - y_i, 0}.

医尿道氏 化基苯二基

Half-integrality and rounding II

Observation

•
$$x_i \leq y_i$$
 and $1 - x_i \leq 2(1 - y_i)$.
• $\max\{x_i + x_j - 1, 0\} \leq \max\{y_i + y_j - 1, 0\}$ (by $x_i \leq y_i, x_j \leq y_j$).
• $\max\{x_i - x_j, 0\} \leq 2\max\{y_i - y_j, 0\}$.

Therefore,

$$\begin{aligned} \mathsf{Val}(f_{\mathrm{int}}) &= \sum_{i \in V} w_i^{(T)} (1 - x_i) + \sum_{i \in V} w_i^{(F)} x_i \\ &+ \sum_{i < j} w_{ij}^{(D)} \max\{x_i + x_j - 1, 0\} + \sum_{i \neq j} w_{ij}^{(I)} \max\{x_i - x_j, 0\} \\ &\leq \sum_{i \in V} w_i^{(T)} 2(1 - y_i) + \sum_{i \in V} w_i^{(F)} y_i \\ &+ \sum_{i < j} w_{ij}^{(D)} \max\{y_i + y_j - 1, 0\} + \sum_{i \neq j} w_{ij}^{(I)} 2 \max\{y_i - y_j, 0\} \\ &\leq 2\mathsf{Val}(f) = 2\mathsf{OPT}_{\mathsf{LP}} \leq 2\mathsf{OPT}. \end{aligned}$$

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

Given $f = \{y_i\}$, construct pairs of critical points $W_f = \{(p, 1-p) : 0 \le p \le 1/2, \exists i \in V, s.t. \ p = y_i \lor 1-p = y_i\}.$

Idea. Iteratively revise f, so that W_f contains less "non-half-integral" pairs after each iteration, while not increasing Val(f). Done when W_f contains no "non-half-integral" pair.

Proof of half-integrality lemma II

$$\begin{split} & \underline{W_f} = \{(p, 1-p) : 0 \le p \le 1/2, \exists i \in V, s.t. \ p = y_i \lor 1-p = y_i\} \\ & \textbf{In each iteration.} Choose a non-half-integral pair $(p, 1-p) \in W_f \\ & (0 p : (q, 1-q) \in W_f, 1/2\}. \end{split}$$$

Denne

$$f^{(t)} = \{y_i^{(t)} = t\}_{i \in S} \cup \{y_i^{(t)} = 1 - t\}_{i \in S'} \cup \{y_i^{(t)} = y_i\}_{i \in V \setminus (S \cup S')}.$$

Claim

$$Val(f^{(t)})$$
 is linear with $t \in [a, b]$.

Exists $\tau \in \{a, b\}$ such that $Val(f^{(\tau)}) \leq Val(f^{(p)}) = Val(f)$. Update f by $f^{(\tau)}$, we have one less non-half-integral pair (p, 1-p) in W_f .

$$\begin{aligned} & \mathsf{Val}(f^{(t)}) = \sum_{i \in V} w_i^{(T)} (1 - y_i^{(t)}) + \sum_{i \in V} w_i^{(F)} y_i^{(t)} \\ & + \sum_{i < j} w_{ij}^{(D)} \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} + \sum_{i \neq j} w_{ij}^{(I)} \max\{y_i^{(t)} - y_j^{(t)}, 0\} \\ & \frac{f^{(t)} = \{y_i^{(t)} = t\}_{i \in S} \cup \{y_i^{(t)} = 1 - t\}_{i \in S'} \cup \{y_i^{(t)} = y_i\}_{i \in V \setminus (S \cup S')} \\ & \overline{\mathsf{Only}} \text{ need to prove } g_1(t) = \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} \text{ and} \\ & g_2(t) = \max\{y_i^{(t)} - y_j^{(t)}, 0\} \text{ are linear with } t \in [a, b] \text{ for any } i, j. \end{aligned}$$

<ロ> <同> <同> < 同> < 同>

æ

$$\begin{aligned} & \mathsf{Val}(f^{(t)}) = \sum_{i \in V} w_i^{(T)} (1 - y_i^{(t)}) + \sum_{i \in V} w_i^{(F)} y_i^{(t)} \\ & + \sum_{i < j} w_{ij}^{(D)} \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} + \sum_{i \neq j} w_{ij}^{(I)} \max\{y_i^{(t)} - y_j^{(t)}, 0\} \\ & \frac{f^{(t)} = \{y_i^{(t)} = t\}_{i \in S} \cup \{y_i^{(t)} = 1 - t\}_{i \in S'} \cup \{y_i^{(t)} = y_i\}_{i \in V \setminus (S \cup S')} \\ & \overline{\mathsf{Only}} \text{ need to prove } g_1(t) = \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} \text{ and} \\ & g_2(t) = \max\{y_i^{(t)} - y_j^{(t)}, 0\} \text{ are linear with } t \in [a, b] \text{ for any } i, j. \end{aligned}$$

<ロ> <同> <同> < 同> < 同>

æ

$$\begin{aligned} & \mathsf{Val}(f^{(t)}) = \sum_{i \in V} w_i^{(T)} (1 - y_i^{(t)}) + \sum_{i \in V} w_i^{(F)} y_i^{(t)} \\ & + \sum_{i < j} w_{ij}^{(D)} \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} + \sum_{i \neq j} w_{ij}^{(I)} \max\{y_i^{(t)} - y_j^{(t)}, 0\} \\ & \frac{f^{(t)} = \{y_i^{(t)} = t\}_{i \in S} \cup \{y_i^{(t)} = 1 - t\}_{i \in S'} \cup \{y_i^{(t)} = y_i\}_{i \in V \setminus (S \cup S')} \\ & \overline{\mathsf{Only}} \text{ need to prove } g_1(t) = \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} \text{ and} \\ & g_2(t) = \max\{y_i^{(t)} - y_j^{(t)}, 0\} \text{ are linear with } t \in [a, b] \text{ for any } i, j. \end{aligned}$$

•
$$i,j \in V \setminus (S \cup S')$$
.

•
$$i \in V \setminus (S \cup S'), j \in S \cup S'$$
,

• The only "non-linear point" is $t = 1 - y_i$ for g_1 and $t = y_i$ for g_2 – they are away from [a, b].

$$\begin{aligned} & \mathsf{Val}(f^{(t)}) = \sum_{i \in V} w_i^{(T)} (1 - y_i^{(t)}) + \sum_{i \in V} w_i^{(F)} y_i^{(t)} \\ & + \sum_{i < j} w_{ij}^{(D)} \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} + \sum_{i \neq j} w_{ij}^{(I)} \max\{y_i^{(t)} - y_j^{(t)}, 0\} \\ & \frac{f^{(t)} = \{y_i^{(t)} = t\}_{i \in S} \cup \{y_i^{(t)} = 1 - t\}_{i \in S'} \cup \{y_i^{(t)} = y_i\}_{i \in V \setminus (S \cup S')} \\ & \mathsf{Only need to prove } g_1(t) = \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} \text{ and} \\ & g_2(t) = \max\{y_i^{(t)} - y_j^{(t)}, 0\} \text{ are linear with } t \in [a, b] \text{ for any } i, j. \end{aligned}$$

$$& i, j \in V \setminus (S \cup S'). \checkmark$$

$$& i \in V \setminus (S \cup S'), j \in S \cup S', \text{ or } i \in S \cup S', j \in V \setminus (S \cup S'). \checkmark$$

$$& i \in S, j \in S' \text{ (or } i \in S', j \in S).$$

$$& \mathfrak{g}_1(t) = y_i^{(t)} + y_j^{(t)} - 1 \equiv 0 \text{ is constant function.}$$

$$& \mathsf{When } i \in S, j \in S', y_i^{(t)} \leq y_j^{(t)}, g_2(t) \equiv 0 \text{ is constant function.}$$

$$& \mathsf{When } i \in S', j \in S, y_i^{(t)} \geq y_j^{(t)}, g_2(t) = y_i^{(t)} - y_j^{(t)} \text{ is linear function of } t. \end{aligned}$$

<ロ> <同> <同> < 同> < 同>

æ

$$\begin{aligned} & \mathsf{Val}(f^{(t)}) = \sum_{i \in V} w_i^{(T)} (1 - y_i^{(t)}) + \sum_{i \in V} w_i^{(F)} y_i^{(t)} \\ & + \sum_{i < j} w_{ij}^{(D)} \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} + \sum_{i \neq j} w_{ij}^{(I)} \max\{y_i^{(t)} - y_j^{(t)}, 0\} \\ & \frac{f^{(t)} = \{y_i^{(t)} = t\}_{i \in S} \cup \{y_i^{(t)} = 1 - t\}_{i \in S'} \cup \{y_i^{(t)} = y_i\}_{i \in V \setminus (S \cup S')} \\ & \mathsf{Only need to prove } g_1(t) = \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} \text{ and} \\ & g_2(t) = \max\{y_i^{(t)} - y_j^{(t)}, 0\} \text{ are linear with } t \in [a, b] \text{ for any } i, j. \end{aligned}$$

$$& \bullet i, j \in V \setminus (S \cup S'). \checkmark$$

$$& \bullet i \in S, j \in S' \text{ (or } i \in S', j \in S). \checkmark$$

$$& \bullet i, j \in S \text{ (or } i, j \in S'). \end{aligned}$$

$$& \bullet when i, j \in S, y_i^{(t)} + y_j^{(t)} < 1, g_1(t) \equiv 0 \text{ is constant function.}$$

$$& \bullet When i, j \in S', y_i^{(t)} + y_j^{(t)} > 1, g_1(t) = y_i^{(t)} + y_j^{(t)} - 1 \text{ is linear function of } t. \end{aligned}$$

• $y_i^t = y_j^t$, thus $g_2(t) \equiv 0$ is constant function.

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● � � �

$$\begin{aligned} & \mathsf{Val}(f^{(t)}) = \sum_{i \in V} w_i^{(T)} (1 - y_i^{(t)}) + \sum_{i \in V} w_i^{(F)} y_i^{(t)} \\ & + \sum_{i < j} w_{ij}^{(D)} \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} + \sum_{i \neq j} w_{ij}^{(I)} \max\{y_i^{(t)} - y_j^{(t)}, 0\} \\ & \frac{f^{(t)} = \{y_i^{(t)} = t\}_{i \in S} \cup \{y_i^{(t)} = 1 - t\}_{i \in S'} \cup \{y_i^{(t)} = y_i\}_{i \in V \setminus (S \cup S')} \\ & \mathsf{Only need to prove } g_1(t) = \max\{y_i^{(t)} + y_j^{(t)} - 1, 0\} \text{ and} \\ & g_2(t) = \max\{y_i^{(t)} - y_j^{(t)}, 0\} \text{ are linear with } t \in [a, b] \text{ for any } i, j. \end{aligned}$$

• $i, j \in V \setminus (S \cup S'). \checkmark$
• $i \in V \setminus (S \cup S'), j \in S \cup S', \text{ or } i \in S \cup S', j \in V \setminus (S \cup S'). \checkmark$
• $i \in S, j \in S' \text{ (or } i \in S', j \in S). \checkmark$
• $i, j \in S \text{ (or } i, j \in S'). \checkmark$

Q.E.D.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Theorem

There exists absolute constant C > 0, s.t. for every $\epsilon > 0$, given a $(1 - \epsilon)$ -satisfiable instance for Horn-3SAT, it is UG-hard to find a $(1 - \frac{C}{\log(1/\epsilon)})$ -satisfying assignment.

同 ト イ ヨ ト イ ヨ ト

Theorem [Raghavendra'08]

There is a canonical SDP relaxation $SDP(\Lambda)$ for each CSP Λ . Let 1 > c > s > 0. A c vs. s integrality gap instance for $SDP(\Lambda)$ \Rightarrow UG-hardness of $(c - \eta)$ vs. $(s + \eta)$ gap- Λ problem, for every constant $\eta > 0$.

We prove the UG-hardness by showing

Theorem

There is a $(1 - 2^{-\Omega(k)})$ vs. (1 - 1/k) gap instance for SDP(Horn-3SAT), for every k > 1.

The canonical SDP for Boolean CSPs I

C: The set of constraints over $X = \{x_1, x_2, \cdots, x_n \in \{0, 1\}\}.$

For each $C \in C$, set up a local distribution π_C on all truth-assignments $\{\sigma : X_C \to \{0,1\}\}$.

• Introduce scalar variables $\pi_C(\sigma)$ with non-negativity constraints and $\sum_{\sigma} \pi_C(\sigma) = 1$.

A lifted LP (in Sherali-Adams system).

$$\begin{array}{ll} \max. & \mathbf{E}_{C \in \mathcal{C}}[\mathbf{Pr}_{\sigma \in \pi_{C}}[C(\sigma) = 1]] \\ \text{s.t.} & \mathbf{Pr}_{\sigma \in \pi_{C}}[\sigma(x_{i}) = b_{1} \wedge \sigma(x_{j}) = b_{2}] = X_{(x_{i},b_{1}),(x_{j},b_{2})} \\ & \forall C \in \mathcal{C}, x_{i}, x_{j} \in C, b_{1}, b_{2} \in \{0,1\} \end{array}$$

An example I

Instance. Clause 1 : $x_1 \land x_2 \to x_4$, Clause 2: $x_3 \land x_4 \to x_2$. **Objective.** Maximize $\frac{1}{2}(\pi_1(x_1, x_2, x_4) + \pi_1(\overline{x_1}, x_2, x_4) + \pi_1(x_1, \overline{x_2}, x_4) + \pi_1(\overline{x_1}, \overline{x_2}, x_4$ $\pi_1(\overline{x_1}, x_2, \overline{x_4}) + \pi_1(x_1, \overline{x_2}, \overline{x_4}) + \pi_1(\overline{x_1}, \overline{x_2}, \overline{x_4})) + \frac{1}{2}(\pi_2(x_3, x_4, x_2) + \pi_1(\overline{x_1}, \overline{x_2}, \overline{x_4})))$ $\pi_2(\overline{x_3}, x_4, x_2) + \pi_2(x_3, \overline{x_4}, x_2) + \pi_2(\overline{x_3}, \overline{x_4}, x_2) + \pi_2(\overline{x_3}, x_4, \overline{x_2}) + \pi_2(\overline{x_3}, x_4, \overline{x_2}) + \pi_2(\overline{x_3}, x_4, \overline{x_2}) + \pi_2(\overline{x_3}, \overline{x_4}, \overline{x_2})$ $\pi_2(x_3, \overline{x_4}, \overline{x_2}) + \pi_2(\overline{x_3}, \overline{x_4}, \overline{x_2}))$ Constraints. $\pi_1(\cdot, \cdot, \cdot)$ and $\pi_2(\cdot, \cdot, \cdot)$ form distributions respectively. $\pi_1(x_1, x_2, x_4) + \pi_1(\overline{x_1}, x_2, x_4) = \pi_2(x_2, x_3, x_4) + \pi_2(x_2, \overline{x_3}, x_4) =$ $X_{(x_2,1),(x_4,1)}$ $\pi_1(x_1,\overline{x_2},x_4) + \pi_1(\overline{x_1},\overline{x_2},x_4) = \pi_2(\overline{x_2},x_3,x_4) + \pi_2(\overline{x_2},\overline{x_3},x_4) =$ $X_{(x_2,0),(x_4,1)}$ $\pi_1(x_1, x_2, \overline{x_4}) + \pi_1(\overline{x_1}, x_2, \overline{x_4}) = \pi_2(x_2, x_3, \overline{x_4}) + \pi_2(x_2, \overline{x_3}, \overline{x_4}) =$ $X_{(x_2,1),(x_4,0)}$

伺下 イヨト イヨト

An example II

 $\pi_1(x_1, \overline{x_2}, \overline{x_4}) + \pi_1(\overline{x_1}, \overline{x_2}, \overline{x_4}) = \pi_2(\overline{x_2}, x_3, \overline{x_4}) + \pi_2(\overline{x_2}, \overline{x_3}, \overline{x_4}) =$ $X_{(x_2,0),(x_4,0)}$ $\pi_1(x_1, x_2, x_4) + \pi_1(\overline{x_1}, x_2, x_4) + \pi_1(x_1, x_2, \overline{x_4}) + \pi_1(\overline{x_1}, x_2, \overline{x_4}) =$ $\pi_2(x_2, x_3, x_4) + \pi_2(x_2, \overline{x_3}, x_4) + \pi_2(x_2, x_3, \overline{x_4}) + \pi_2(x_2, \overline{x_3}, \overline{x_4}) =$ $X_{(x_2,1),(x_2,1)}$ $\pi_1(x_1, \overline{x_2}, x_4) + \pi_1(\overline{x_1}, \overline{x_2}, x_4) + \pi_1(x_1, \overline{x_2}, \overline{x_4}) + \pi_1(\overline{x_1}, \overline{x_2}, \overline{x_4}) =$ $\pi_2(\overline{x_2}, x_3, x_4) + \pi_2(\overline{x_2}, \overline{x_3}, x_4) + \pi_2(\overline{x_2}, x_3, \overline{x_4}) + \pi_2(\overline{x_2}, \overline{x_3}, \overline{x_4}) =$ $X_{(x_2,0),(x_2,0)}$ $\pi_1(x_1, x_2, x_4) + \pi_1(\overline{x_1}, x_2, x_4) + \pi_1(x_1, \overline{x_2}, x_4) + \pi_1(\overline{x_1}, \overline{x_2}, x_4) =$ $\pi_2(x_2, x_3, x_4) + \pi_2(x_2, \overline{x_3}, x_4) + \pi_2(\overline{x_2}, x_3, x_4) + \pi_2(\overline{x_2}, \overline{x_3}, x_4) =$ $X_{(x_4,1),(x_4,1)}$ $\pi_1(x_1, x_2, \overline{x_4}) + \pi_1(\overline{x_1}, x_2, \overline{x_4}) + \pi_1(x_1, \overline{x_2}, \overline{x_4}) + \pi_1(\overline{x_1}, \overline{x_2}, \overline{x_4}) =$ $\pi_2(x_2, x_3, \overline{x_4}) + \pi_2(x_2, \overline{x_3}, \overline{x_4}) + \pi_2(\overline{x_2}, x_3, \overline{x_4}) + \pi_2(\overline{x_2}, \overline{x_3}, \overline{x_4}) =$ $X_{(x_4,0),(x_4,0)}$

The canonical SDP for Boolean CSPs II

Add vectors. Introduce $\mathbf{v}_{(x,0)}$ and $\mathbf{v}_{(x,1)}$ corresponding to the events x = 0 and x = 1.

Constraints.

•
$$\mathbf{v}_{(x,0)} \cdot \mathbf{v}_{(x,1)} = 0$$
 - mutually exclusive events
• $\mathbf{v}_{(x,0)} + \mathbf{v}_{(x,1)} = \mathbf{I}$ - probability adds up to 1
• $\mathbf{Pr}_{\sigma \in \pi_C}[\sigma(x_i) = b_1 \wedge \sigma(x_j) = b_2] = \mathbf{v}_{(x_i,b_1)} \cdot \mathbf{v}_{(x_j,b_2)}$
The canonical SDP.

$$\begin{array}{ll} \max. & \mathbf{E}_{C \in \mathcal{C}} [\mathbf{Pr}_{\sigma \in \pi_{C}} [C(\sigma) = 1]] \\ \text{s.t.} & \mathbf{v}_{(x_{i},0)} \cdot \mathbf{v}_{(x_{i},1)} = \mathbf{0} \\ & \mathbf{v}_{(x_{i},0)} + \mathbf{v}_{(x_{i},1)} = \mathbf{I} & \forall i \in [n] \\ & \|\mathbf{I}\|^{2} = 1 & \forall i \in [n] \\ & \mathbf{Pr}_{\sigma \in \pi_{C}} [\sigma(x_{i}) = b_{1} \wedge \sigma(x_{j}) = b_{2}] = \mathbf{v}_{(x_{i},b_{1})} \cdot \mathbf{v}_{(x_{j},b_{2})} \\ & \forall C \in \mathcal{C}, x_{i}, x_{j} \in C, b_{1}, b_{2} \in \{0,1\} \end{array}$$

The canonical SDP for Boolean CSPs III

Simplification. Define $\mathbf{v}_{(x,1)} = \mathbf{v}_x$, and $\mathbf{v}_{(x,0)} = \mathbf{I} - \mathbf{v}_x$. The canonical SDP is equivalent to

$$\begin{array}{ll} \max. & \mathbf{E}_{C \in \mathcal{C}}[\mathbf{Pr}_{\sigma \in \pi_{C}}[C(\sigma) = 1]] \\ \text{s.t.} & (\mathbf{I} - \mathbf{v}_{x_{i}}) \cdot \mathbf{v}_{x_{i}} = 0 & \forall i \in [n] \\ & \|\mathbf{I}\|^{2} = 1 & \forall i \in [n] \\ \mathbf{Pr}_{\sigma \in \pi_{C}}[\sigma(x_{i}) = 1 \wedge \sigma(x_{j}) = 1] = \mathbf{v}_{x_{i}} \cdot \mathbf{v}_{x_{j}} & \forall C \in \mathcal{C}, x_{i}, x_{j} \in C \end{array}$$

.

The canonical SDP for Boolean CSPs III

Simplification. Define $\mathbf{v}_{(x,1)} = \mathbf{v}_x$, and $\mathbf{v}_{(x,0)} = \mathbf{I} - \mathbf{v}_x$. The canonical SDP is equivalent to

$$\begin{array}{ll} \max. & \mathbf{E}_{C \in \mathcal{C}}[\mathbf{Pr}_{\sigma \in \pi_{C}}[C(\sigma) = 1]] \\ \text{s.t.} & (\mathbf{I} - \mathbf{v}_{x_{i}}) \cdot \mathbf{v}_{x_{i}} = 0 & \forall i \in [n] \\ & \|\mathbf{I}\|^{2} = 1 & \forall i \in [n] \\ \mathbf{Pr}_{\sigma \in \pi_{C}}[\sigma(x_{i}) = 1 \wedge \sigma(x_{j}) = 1] = \mathbf{v}_{x_{i}} \cdot \mathbf{v}_{x_{j}} & \forall C \in \mathcal{C}, x_{i}, x_{j} \in \mathcal{C} \end{array}$$

Comment

The SDP is stronger than lifted LP in many cases. For 2-SAT, lifted LP has a huge gap 1 vs. 3/4, while SDP gives the optimal gap $(1 - \epsilon)$ vs. $(1 - O(\sqrt{\epsilon}))$.

Consider instace $\mathcal{I}_{k}^{\text{Horn}}$. Step 0: x_{0} , y_{0} Step 1: $x_{0} \land y_{0} \rightarrow x_{1}$, $x_{0} \land y_{0} \rightarrow y_{1}$ Step 2: $x_{1} \land y_{1} \rightarrow x_{2}$, $x_{1} \land y_{1} \rightarrow y_{2}$ Step 3: $x_{2} \land y_{2} \rightarrow x_{3}$, $x_{2} \land y_{2} \rightarrow y_{3}$... Step k + 1: $x_{k} \land y_{k} \rightarrow x_{k+1}$, $x_{k} \land y_{k} \rightarrow y_{k+1}$ Step k + 2: x_{k+1} , $x_{k} \land y_{k} \rightarrow y_{k+1}$

Observation

 $\mathcal{I}_k^{\mathrm{Horn}}$ is not satisfiable. Therefore $\mathrm{OPT}(\mathcal{I}_k^{\mathrm{Horn}}) \leq 1 - \Omega(1/k)$.

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

-

Step 0:	<i>x</i> ₀ ,	<i>y</i> 0
Step 1:	$x_0 \wedge y_0 o x_1$,	$x_0 \wedge y_0 \rightarrow y_1$
Step 2:	$x_1 \wedge y_1 o x_2$,	$x_1 \wedge y_1 \rightarrow y_2$
Step 3:	$x_2 \wedge y_2 o x_3$,	$x_2 \wedge y_2 \rightarrow y_3$
Step $k + 1$:	$x_k \wedge y_k o x_{k+1}$,	$x_k \wedge y_k \rightarrow y_{k+1}$
Step $k + 2$:	$\overline{x_{k+1}}$,	$\overline{y_{k+1}}$

Observation

Clauses from two different steps share at most one variable. No need to worry about pairwise margins.

Step 0:	<i>x</i> ₀ ,	Уо
Step 1:	$x_0 \wedge y_0 o x_1$,	$x_0 \wedge y_0 \rightarrow y_1$
Step 2:	$x_1 \wedge y_1 o x_2$,	$x_1 \wedge y_1 \rightarrow y_2$
Step 3:	$x_2 \wedge y_2 o x_3$,	$x_2 \wedge y_2 \rightarrow y_3$
	•••	
Step $k + 1$:	$x_k \wedge y_k o x_{k+1}$,	$x_k \wedge y_k o y_{k+1}$
Step $k + 2$:	$\overline{x_{k+1}}$,	$\overline{y_{k+1}}$

 $loss = 2\delta$

_

$x_0(y_0)$	$\pi_{C}(\sigma)$		$x_0 \land y_0 \rightarrow x_2$	$_{1}(y_{1})$	$\pi_{C}(\sigma)$
~0(90)	<i>n</i> ((0)	_	$1 \wedge 1 \rightarrow$	1	$1-2\delta$
1	$1-\delta$	\Rightarrow	$0 \wedge 1 \rightarrow$	0	δ
0	δ		$1 \wedge 0 ightarrow$	0	δ

→ 3 → < 3</p>

Step 0:	<i>x</i> ₀ ,	Уо
Step 1:	$x_0 \wedge y_0 o x_1$,	$x_0 \wedge y_0 \rightarrow y_1$
Step 2:	$x_1 \wedge y_1 o x_2$,	$x_1 \wedge y_1 \rightarrow y_2$
Step 3:	$x_2 \wedge y_2 o x_3$,	$x_2 \wedge y_2 \rightarrow y_3$
Step $k + 1$:	$x_k \wedge y_k o x_{k+1}$,	$x_k \wedge y_k o y_{k+1}$
Step $k + 2$:	$\overline{x_{k+1}}$,	$\overline{y_{k+1}}$

 $loss = 2\delta$

_

$x_1 \wedge y_1 \rightarrow x_2(y_2)$	$\pi_{C}(\sigma)$		$x_0 \land y_0 \rightarrow x_0$	$_{1}(y_{1})$	$\pi_{C}(\sigma)$
$1 \wedge 1 ightarrow 1$	$1-4\delta$		$1 \wedge 1 ightarrow$	1	$1-2\delta$
$0 \wedge 1 \rightarrow 0$	2δ	\leftarrow	$0 \wedge 1 \rightarrow$	0	δ
$1 \wedge 0 \rightarrow 0$	2δ		$1 \wedge 0 \rightarrow$	0	δ

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Step 0:	<i>x</i> ₀ ,	Уо
Step 1:	$x_0 \wedge y_0 o x_1$,	$x_0 \wedge y_0 \rightarrow y_1$
Step 2:	$x_1 \wedge y_1 o x_2$,	$x_1 \wedge y_1 \rightarrow y_2$
Step 3:	$x_2 \wedge y_2 o x_3$,	$x_2 \wedge y_2 \rightarrow y_3$
Step $k + 1$:	$x_k \wedge y_k o x_{k+1}$,	$x_k \wedge y_k o y_{k+1}$
Step $k + 2$:	$\overline{x_{k+1}}$,	$\overline{y_{k+1}}$

 $loss = 2\delta$

_

$x_1 \wedge y_1 \rightarrow x_2(y)$	$(2) \mid \pi_{\mathcal{C}}(\sigma)$		$x_2 \wedge y_2 \rightarrow x_2$	$_{3}(y_{3})$	$\pi_{C}(\sigma)$
$1 \wedge 1 \rightarrow 1$	$1-4\delta$		$1 \wedge 1 \rightarrow$	1	$1-8\delta$
$0 \wedge 1 \rightarrow 0$	2δ	\Rightarrow	$0 \wedge 1 \rightarrow$	0	4δ
$1 \wedge 0 \rightarrow 0$	2δ		$1 \wedge 0 \rightarrow$	0	4δ

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

□ > < E > < E >

Step 0:	<i>x</i> ₀ ,	Уо
Step 1:	$x_0 \wedge y_0 o x_1$,	$x_0 \wedge y_0 \rightarrow y_1$
Step 2:	$x_1 \wedge y_1 o x_2$,	$x_1 \wedge y_1 \rightarrow y_2$
Step 3:	$x_2 \wedge y_2 o x_3$,	$x_2 \wedge y_2 \rightarrow y_3$
Step $k + 1$:	$x_k \wedge y_k o x_{k+1}$,	$x_k \wedge y_k o y_{k+1}$
Step $k + 2$:	$\overline{x_{k+1}}$,	$\overline{y_{k+1}}$

 $loss = 2\delta$

_

$x_k \wedge y_k \rightarrow x_{k+1}$ $x_k \wedge y_k \rightarrow y_{k+1}$	$\pi_{C}(\sigma)$		$x_2 \wedge y_2 \rightarrow x_3$	$_{3}(y_{3})$	$\pi_{C}(\sigma)$
	$-2^{k+1}\delta$	$\leftarrow \cdots$	$1 \land 1 \rightarrow$	_	$1-8\delta$
$egin{array}{ccc} 0 \wedge 1 ightarrow & 0 \ 1 \wedge 0 ightarrow & 0 \end{array}$	$2^k \delta$ $2^k \delta$		$egin{array}{c} 0 \wedge 1 ightarrow \ 1 \wedge 0 ightarrow \end{array}$	-	4δ 4δ

Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

伺 ト イヨト イヨト

Step 0:	<i>x</i> ₀ ,	Уо
Step 1:	$x_0 \wedge y_0 o x_1$,	$x_0 \wedge y_0 ightarrow y_1$
Step 2:	$x_1 \wedge y_1 o x_2$,	$x_1 \wedge y_1 ightarrow y_2$
Step 3:	$x_2 \wedge y_2 o x_3$,	$x_2 \wedge y_2 \rightarrow y_3$
	•••	
Step $k + 1$:	$x_k \wedge y_k o x_{k+1}$,	$x_k \wedge y_k o y_{k+1}$
Step $k + 2$:	$\overline{x_{k+1}}$,	$\overline{y_{k+1}}$

$$loss = 2\delta + 2(1 - 2^{k+1}\delta)$$

1

æ

・聞き ・ 国を ・ 国を

Step 0:	<i>x</i> ₀ ,	<i>Y</i> 0
Step 1:	$x_0 \wedge y_0 o x_1$,	$x_0 \wedge y_0 ightarrow y_1$
Step 2:	$x_1 \wedge y_1 o x_2$,	$x_1 \wedge y_1 ightarrow y_2$
Step 3:	$x_2 \wedge y_2 o x_3$,	$x_2 \wedge y_2 \rightarrow y_3$
Step $k + 1$:	$x_k \wedge y_k o x_{k+1}$,	$x_k \wedge y_k o y_{k+1}$
Step $k + 2$:	$\overline{x_{k+1}}$,	$\overline{y_{k+1}}$

loss = $2\delta + 2(1 - 2^{k+1}\delta) = 1/2^k$ (by choosing $\delta = 1/2^{k+1}$).

$x_k \wedge y_k \rightarrow x_{k+1}$	$\pi_{C}(\sigma)$			
$x_k \wedge y_k \rightarrow y_{k+1}$	$\pi \mathcal{E}(0)$		$x_{k+1}(y_{k+1})$	$\pi_{C}(\sigma)$
$1 \wedge 1 ightarrow 1$	$1-2^{k+1}\delta$	\Rightarrow	1	$1-2^{k+1}\delta$
$0 \wedge 1 ightarrow 0$	$2^k \delta$		0	$2^{k+1}\delta$
$1 \wedge 0 \rightarrow \ 0$	$2^k \delta$			

◎ ▶ ▲ ∃ ▶ ▲ ∃ ▶ → 目 → の Q ()

Problem. Is there any set of vectors corresponding to the following distribution?

$x_i \wedge y_i \rightarrow x_i$	$i_{i+1}(y_{i+1})$	$\pi_{C}(\sigma)$
$1\!\wedge\!1\! ightarrow$	1	$1-2\delta$
$0{\wedge}1{\rightarrow}$	0	δ
$1\!\wedge\!0\!\rightarrow$	0	δ

Problem. Is there any set of vectors corresponding to the following distribution?

$x_i \wedge y_i \rightarrow x_i$	$i_{i+1}(y_{i+1})$	$\pi_{C}(\sigma)$
$1\!\wedge\!1\! ightarrow$	1	$1-2\delta$
$0{\wedge}1{\rightarrow}$	0	δ
$1{\wedge}0{\rightarrow}$	0	δ

The required inner-product matrix - should be PSD.

		I	\mathbf{v}_{x_i}	\mathbf{v}_{y_i}	$\mathbf{v}_{x_{i+1}}$	$\mathbf{v}_{y_{i+1}}$
	I	1	$1-\delta$	$1-\delta$	$1-2\delta$	$1-2\delta$
v	xi	$1-\delta$	$1-\delta$	$1-2\delta$	$1-2\delta$	$1-2\delta$
v	Yi	$1-\delta$	$1-2\delta$	$1-\delta$	$1-2\delta$	$1-2\delta$
v _x	<i>i</i> +1	$1-2\delta$	$1-2\delta$	$1-2\delta$	$1-2\delta$	
\mathbf{v}_{y}	'i+1	$\begin{array}{c}1\\1-\delta\\1-\delta\\1-2\delta\\1-2\delta\end{array}$	$1-2\delta$	$1-2\delta$		$1-2\delta$

Problem. Is there any set of vectors corresponding to the following distribution?

$x_i \wedge y_i \rightarrow x_i$	$i_{i+1}(y_{i+1})$	$\pi_{C}(\sigma)$
$1\!\wedge\!1\! ightarrow$	1	$1-2\delta$
$0{\wedge}1{\rightarrow}$	0	δ
$1\!\wedge\!0\!\rightarrow$	0	δ

The required inner-product matrix - should be PSD.

	I	\mathbf{v}_{x_i}	\mathbf{v}_{y_i}	$\mathbf{v}_{x_{i+1}}$	$\mathbf{v}_{y_{i+1}}$
I	1	$1-\delta$	$1-\delta$	$1-2\delta$	$1-2\delta$
\mathbf{v}_{x_i}	$1-\delta$	$1-\delta$	$1-2\delta$	$1-2\delta$	$1-2\delta$
\mathbf{v}_{y_i}	$1-\delta$	$1-2\delta$	$1-\delta$	$1-2\delta$	$1-2\delta$
$\mathbf{v}_{x_{i+1}}$	$1-2\delta$	$1-2\delta$	$1-2\delta$	$1-2\delta$?
$\mathbf{v}_{y_{i+1}}$	$1\\1-\delta\\1-\delta\\1-2\delta\\1-2\delta$	$1-2\delta$	$1-2\delta$?	$1-2\delta$

Problem. Is there any set of vectors corresponding to the following distribution?

$x_i \wedge y_i \rightarrow x_i$	$y_{i+1}(y_{i+1})$	$\pi_{C}(\sigma)$
$1\!\wedge\!1\! ightarrow$	1	$1-2\delta$
$0{\wedge}1{\rightarrow}$	0	δ
$1\!\wedge\!0\!\rightarrow$	0	δ

The required inner-product matrix - should be PSD.

	I	\mathbf{v}_{x_i}	\mathbf{v}_{y_i}	$\mathbf{v}_{x_{i+1}}$	$\mathbf{v}_{y_{i+1}}$
I	1	$1-\delta$	$1-\delta$	$1-2\delta$	$1-2\delta$
\mathbf{V}_{X_i}	$1-\delta$	$1-\delta$	$1-2\delta$	$1 - 2\delta$	$1-2\delta$
\mathbf{v}_{y_i}	$1-\delta$	$1-2\delta$	$1-\delta$	$1-2\delta$	$1-2\delta$
$\mathbf{v}_{x_{i+1}}$	$1-2\delta$	$1-2\delta$	$1-2\delta$	$1-2\delta$	$1-2\delta$
$\mathbf{v}_{V_{i+1}}$	$1-2\delta$	$1-2\delta$	$1-2\delta$	$1-2\delta$	$1-2\delta$

The matrix is PSD because...

Bad news. This is the only way to make the matrix PSD.

Why is that news bad?

From Step i

$x_i \wedge y_i \rightarrow x_i$	$_{+1}(y_{i+1})$	$\pi_{C}(\sigma)$
$1\!\wedge\! 1\! ightarrow$	1	$1-2\delta$
$0{\wedge}1{\rightarrow}$	0	δ
$1{\wedge}0{\rightarrow}$	0	δ

to Step i + 1

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Why is that news bad?

From Step i

$x_i \wedge y_i \rightarrow x_i$	$_{+1}(y_{i+1})$	$\pi_{C}(\sigma)$
$1\!\wedge\! 1\! ightarrow$	1	$1-2\delta$
$0{\wedge}1{\rightarrow}$	0	δ
$1{\wedge}0{\rightarrow}$	0	δ

to Step i + 1

The inner-product $\mathbf{v}_{x_{i+1}} \cdot \mathbf{v}_{y_{i+1}}$ is too large – angle between two vectors is 0. The probability $\mathbf{Pr}[x_{i+2} = 1]$ ($\mathbf{Pr}[y_{i+2} = 1]$) cannot decrease.

Being less greedy – decrease the norm slower I

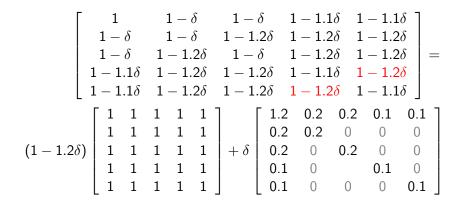
$x_i \wedge y_i \rightarrow x_i$	$_{i+1}(y_{i+1})$	$\pi_{C}(\sigma)$
$1\!\wedge\!1\! ightarrow$	1	$1-1.2\delta$
$0{\wedge}1{\rightarrow}$	0	0.2δ
$1{\wedge}0{\rightarrow}$	0	0.2δ
$0{\wedge}0{\rightarrow}$	1	0.1δ
$0{\wedge}0{\rightarrow}$	0	0.7δ

The corresponding inner-product matrix.

	I	\mathbf{v}_{x_i}	\mathbf{v}_{y_i}	$\mathbf{v}_{x_{i+1}}$	$\mathbf{v}_{y_{i+1}}$
	1	$1-\delta$	$1-\delta$	$1-1.1\delta$	$1-1.1\delta$
\mathbf{v}_{x_i}	$1-\delta$	$1-\delta$	$1-1.2\delta$	$1-1.2\delta$	$1-1.2\delta$
\mathbf{v}_{y_i}	$1-\delta$	$1-1.2\delta$	$1-\delta$	$1-1.2\delta$	$1-1.2\delta$
$\mathbf{v}_{x_{i+1}}$	$1-1.1\delta$	$1-1.2\delta$	$1-1.2\delta$	$1-1.1\delta$	$1-1.2\delta$
$\mathbf{v}_{y_{i+1}}$	$egin{array}{c} 1-\delta\ 1-\delta\ 1-1.1\delta\ 1-1.1\delta\end{array}$	$1-1.2\delta$	$1-1.2\delta$	$1-1.2\delta$	$1-1.1\delta$

高 とう きょう く ほ とう ほう

The matrix is PSD because...



Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

The corresponding inner-product matrix.

	I	\mathbf{v}_{x_i}	\mathbf{v}_{y_i}	$\mathbf{v}_{x_{i+1}}$	$\mathbf{v}_{y_{i+1}}$
I	1	$1-\delta$	$1-\delta$	$1-1.1\delta$	$1-1.1\delta$
\mathbf{V}_{X_i}	$1-\delta$	$1-\delta$	$1-1.2\delta$	$1-1.2\delta$	$1-1.2\delta$
\mathbf{v}_{y_i}	$1-\delta$	$1-1.2\delta$	$1-\delta$	$1-1.2\delta$	$1-1.2\delta$
$\mathbf{v}_{x_{i+1}}$	$1-1.1\delta$	$1-1.2\delta$	$1-1.2\delta$	$1-1.1\delta$	$1-1.2\delta$
$\mathbf{v}_{y_{i+1}}$	$1 - \delta$ $1 - \delta$ $1 - 1.1\delta$ $1 - 1.1\delta$	$1-1.2\delta$	$1-1.2\delta$	$1-1.2\delta$	$1-1.1\delta$

Norm: $\|\mathbf{v}_{x_{i+1}}\|^2 = \|\mathbf{v}_{y_{i+1}}\|^2 = 1 - 1.1\delta = 1 - \gamma$. Inner-product: $\mathbf{v}_{x_{i+1}} \cdot \mathbf{v}_{y_{i+1}} = 1 - 1.2\delta = 1 - 1.09\gamma$.

Would be good if $\mathbf{v}_{x_{i+1}} \cdot \mathbf{v}_{y_{i+1}} = 1 - 1.2\gamma$.

伺 ト イヨ ト イヨ ト ・ ヨ ・ ク へ (や

Amplify the angle I

Start point. Norm: $\ \mathbf{v}_{x_{i+1}}\ ^2 = \ \mathbf{v}_{y_{i+1}}\ ^2 = 1 - \gamma$. Inner-product: $\mathbf{v}_{x_{i+1}} \cdot \mathbf{v}_{y_{i+1}} = 1 - (1 + \tau)\gamma$.								
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} & & & & \\ +1 \rightarrow x_{i+2}(y_{i+2}) \\ & \rightarrow & 1 \\ & \rightarrow & 0 \\ & \rightarrow & 0 \\ & \rightarrow & 0 \\ & \rightarrow & 1 \\ & \rightarrow & 0 \end{array}$	$ \begin{array}{c c} \pi_{\mathcal{C}}(\sigma) \\ \hline 1 - (1 + \tau)\gamma \\ \tau\gamma \\ \tau\gamma \\ \tau\gamma \\ \tau\gamma \\ (1 - 2\tau)\gamma \end{array} $				
	I	$\mathbf{v}_{x_{i+1}}$	$\mathbf{v}_{y_{i+1}}$	$\mathbf{v}_{x_{i+2}}$	$\mathbf{v}_{y_{i+2}}$			
					$1-\gamma$			
$\mathbf{v}_{x_{i+1}}$	$1-\gamma$	$1-\gamma$	$1-(1+ au)\gamma$	$1-(1+ au)\gamma$	$1-(1+ au)\gamma$			
$\mathbf{v}_{y_{i+1}}$	$1-\gamma$	$1-(1+ au)\gamma$	$1-\gamma$	$1-(1+ au)\gamma$	$1-(1+ au)\gamma$			
$\mathbf{v}_{x_{i+2}}$	$1-\gamma$	$1 - (1 + \tau)\gamma$	$1-(1+ au)\gamma$	$1-\gamma$	$1-(1+1.5 au)\gamma$			
$\mathbf{v}_{y_{i+2}}$	$ 1-\gamma $	$1-(1+ au)\gamma$	$1-(1+ au)\gamma$	$1-(1+1.5 au)\gamma$	$1-\gamma$			

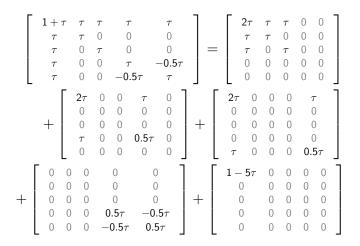
- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ● � � � �

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

I ≡ ▶ < </p>

э

Where...



is PSD when $0 \le \tau \le 0.2$.

· < E > < E > _ E

Amplify the angle II

Start point.

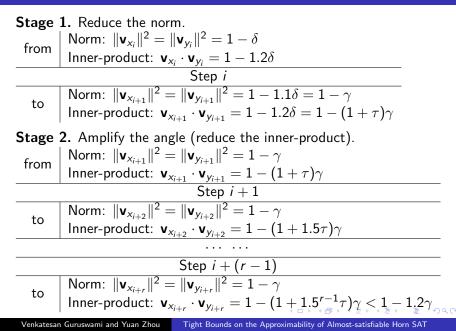
Norm: $\|\mathbf{v}_{x_{i+1}}\|^2 = \|\mathbf{v}_{y_{i+1}}\|^2 = 1 - \gamma$. Inner-product: $\mathbf{v}_{x_{i+1}} \cdot \mathbf{v}_{y_{i+1}} = 1 - (1 + \tau)\gamma$.

Result.

Norm: $\|\mathbf{v}_{x_{i+2}}\|^2 = \|\mathbf{v}_{y_{i+2}}\|^2 = 1 - \gamma$. Inner-product: $\mathbf{v}_{x_{i+2}} \cdot \mathbf{v}_{y_{i+2}} = 1 - (1 + 1.5\tau)\gamma$.

Venkatesan Guruswami and Yuan Zhou

A two-stage block



Repeat the blocks

Suppose $k = qr$, let $\delta = 1.1^{-q}/1.2$.							
Step 0	Norm: $\ \mathbf{v}_{x_0}\ ^2 = \ \mathbf{v}_{y_0}\ ^2 = 1 - \delta$ Inner-product: $\mathbf{v}_{x_0} \cdot \mathbf{v}_{y_0} = 1 - 1.2\delta$						
$\frac{1}{10000000000000000000000000000000000$							
Step r	Norm: $\ \mathbf{v}_{x_r}\ ^2 = \ \mathbf{v}_{y_r}\ ^2 = 1 - 1.1\delta$						
	Inner-product: $\mathbf{v}_{x_r} \cdot \mathbf{v}_{y_r} = 1 - 1.2 \cdot 1.1\delta$						
Block 2							
Step 2r	Norm: $\ \mathbf{v}_{x_{2r}}\ ^2 = \ \mathbf{v}_{y_{2r}}\ ^2 = 1 - 1.1^2 \delta$						
Step 21	Inner-product: $\mathbf{v}_{x_{2r}}\cdot\mathbf{v}_{y_{2r}}=1-1.2\cdot1.1^2\delta$						
···· ···							
Block q							
Step <i>qr</i>	Norm: $\ \mathbf{v}_{x_{qr}}\ ^2 = \ \mathbf{v}_{y_{qr}}\ ^2 = 1 - 1.1^q \delta$						
	Inner-product: $\mathbf{v}_{x_{qr}} \cdot \mathbf{v}_{y_{qr}} = 1 - 1.2 \cdot 1.1^q \delta = 0$						
Step $k + 1 = qr + 1$	Norm: $\ \mathbf{v}_{x_{k+1}}\ ^2 = \ \mathbf{v}_{y_{k+1}}\ ^2 = 0$						

□ ▶ ▲ 臣 ▶ ▲ 臣

æ

Repeat the blocks

Suppose $k = qr$, let $\delta = 1.1^{-q}/1.2$.						
Step 0	Norm: $\ \mathbf{v}_{x_0}\ ^2 = \ \mathbf{v}_{y_0}\ ^2 = 1 - \delta$					
Step 0	Inner-product: $\mathbf{v}_{x_0}\cdot\mathbf{v}_{y_0}=1-1.2\delta$					
Block 1						
Step r	Norm: $\ \mathbf{v}_{x_r}\ ^2 = \ \mathbf{v}_{y_r}\ ^2 = 1 - 1.1\delta$					
Step /	Inner-product: $\mathbf{v}_{x_r}\cdot\mathbf{v}_{y_r}=1-1.2\cdot1.1\delta$					
Block 2						
Step 2r	Norm: $\ \mathbf{v}_{\mathbf{x}_{2r}}\ ^2 = \ \mathbf{v}_{\mathbf{y}_{2r}}\ ^2 = 1 - 1.1^2 \delta$					
Step 21	Inner-product: $\mathbf{v}_{x_{2r}}\cdot\mathbf{v}_{y_{2r}}=1-1.2\cdot1.1^2\delta$					
···· ···						
Block q						
Step gr	Norm: $\ \mathbf{v}_{x_{qr}}\ ^2 = \ \mathbf{v}_{y_{qr}}\ ^2 = 1 - 1.1^q \delta$					
	Inner-product: $\mathbf{v}_{x_{qr}} \cdot \mathbf{v}_{y_{qr}} = 1 - 1.2 \cdot 1.1^q \delta = 0$					
Step $k+1 = qr+1$	Norm: $\ \mathbf{v}_{x_{k+1}}\ ^2 = \ \mathbf{v}_{y_{k+1}}\ ^2 = 0$					
loss $= 2\delta = 2^{-\Omega(k)}$ only from Step 0.						

□ ▶ ▲ 臣 ▶ ▲ 臣

æ

The SDP gap

Gap instace $\mathcal{I}_k^{\mathrm{Horn}}$.		
Step 0:	<i>x</i> ₀ ,	<i>Y</i> 0
Step 1:	$x_0 \wedge y_0 o x_1$,	$x_0 \wedge y_0 \rightarrow y_1$
Step 2:	$x_1 \wedge y_1 o x_2$,	$x_1 \wedge y_1 \rightarrow y_2$
Step 3:	$x_2 \wedge y_2 o x_3$,	$x_2 \wedge y_2 \rightarrow y_3$
	•••	
Step $k + 1$:	$x_k \wedge y_k o x_{k+1}$,	$x_k \wedge y_k \rightarrow y_{k+1}$

Step k + 2: $\overline{x_{k+1}}$, $\overline{y_{k+1}}$

Observation

 $\mathcal{I}_k^{\mathrm{Horn}}$ is not satisfiable. Therefore $\mathrm{OPT}(\mathcal{I}_k^{\mathrm{Horn}}) \leq 1 - \Omega(1/k)$.

Lemma

$$\operatorname{OPT}_{\operatorname{SDP}}(\mathcal{I}_k^{\operatorname{Horn}}) \geq 1 - 2^{-\Omega(k)}$$

э

< 67 ▶

Questions?

Venkatesan Guruswami and Yuan Zhou Tight Bounds on the Approximability of Almost-satisfiable Horn SAT

P

▶ < ≣ ▶ <</p>

э

æ

Venkatesan Guruswami, and Yuan Zhou, Tight Bounds on the Approximability of Almost-satisfiable Horn SAT and Exact Hitting Set, SODA 2011 (to appear).