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Abstract. Given a two-player one-round game G with value val(G) = (1 − η), how quickly does the
value decay under parallel repetition? If G is a projection game, then it is known that we can guarantee
val(G⊗n) ≤ (1− η2)Ω(n), and that this is optimal. An important question is under what conditions can
we guarantee that strong parallel repetition holds, i.e. val(G⊗) ≤ (1− η)Ω(n)?
In this work, we show a strong parallel repetition theorem for the case when G’s constraint graph has
low threshold rank. In particular, for any k ≥ 2, if σk is the k-th largest singular value of G’s constraint
graph, then we show that

val(G⊗n) ≤

(
1−

√
1− σ2

k

k
· η

)Ω(n)

.

When k is a constant and σk is bounded away from 1, this decays like (1−η)Ω(n). In addition, we show
that this upper-bound exactly matches the value of the Odd-Cycle Game under parallel repetition. As
a result, our parallel repetition theorem is tight.
This improves and generalizes upon the work of [RR12], who showed a strong parallel repetition theorem
for the case when G’s constraint graph is an expander.

1 Introduction

A two-prover one-round game G on questions U ∪V is a distribution on (u, v) (where u ∈ U, v ∈ V )
so that u is given to the first prover and v is given to the second prover. The provers respond with
answers f(u) and g(v), which are from the set Σ. The answers are accepted if they satisfy the
predicate πu,v(f(u), g(v)) associated to the pair of questions (u, v). We say G is a projection game
if for every predicate πu,v and every β ∈ Σ, there is at most one α ∈ Σ such that πu,v(α, β) is
satisfied. The constraint graph of G is the bipartite graph H with vertex set U ∪ V corresponding
to the distribution of questions. For the precise definitions, please refer to Section 2.

Perhaps the most fundamental result in the area of two-prover one-round games is the parallel
repetition theorem of Raz [Raz98]. In its version for projection games by Rao [Rao11], it states:

Theorem 1. Let G be a projection game. If val(G) ≤ 1− η, then val(G⊗n) ≤ (1− η2)Ω(n).

Stated contrapositively, if val(G⊗n) ≥ (1−η)n, then val(G) ≥ 1−O(
√
η). Naively, one would expect

a faster rate of decay: that is, if val(G) ≤ 1−η, then val(G⊗n) should satisfy val(G⊗n) ≤ (1−η)Ω(n).
A parallel repetition bound of this form is known as strong parallel repetition, and it was open
whether a strong parallel repetition theorem was true in general, or even for interesting restricted
classes of games (e.g. Unique Games; see [FKO07]), until Raz [Raz11] showed that strong parallel
repetition fails on the so-called Odd Cycle Game. In particular, he showed that val(G⊗n) for the
Odd Cycle Game matches exactly the upper bound given in Theorem 1. Thus, Theorem 1 is
essentially the best parallel repetition theorem one can show for general projection games. As the
Odd Cycle Game has almost every nice property one could hope for in a two-player one-round
game, this closed the door on a strong parallel repetition theorem for many interesting subclasses
of two-player one-round games as well.



One interesting subclass not covered by the Odd Cycle Game is the class of expanding games.
This is the class of two-player one-round games G in which the constraint graph of G is an expander.
This is an interesting class of two-player one-round games which appears frequently in the hardness
of approximation literature. Following the work of [AKK+08] and [BRR+09], Raz and Rosen [RR12]
showed a strong parallel repetition theorem for expanding games. The following exact bound is
implicit in their paper:

Theorem 2. Let G be a projection game, and let σ2 be the second largest singular value of G’s
constraint graph. If val(G) ≤ (1− η), then val(G⊗n) ≤ (1− (1− σ2)2 · η)Ω(n).

In particular, if σ2 is a constant, then val(G⊗n) decays like (1− η)Ω(n).
This result motivates a couple of questions. The first is obvious: is the dependence on σ2 in

Theorem 2 tight? If not, can it be improved? For the second question, we begin with a definition. A
graph with low threshold rank is one whose k-th largest singular value σk is bounded away from 1,
where k is small (say, a constant). The study of low threshold rank graphs was initiated in [Kol11],
and they were first formally defined in [ABS10]. Since then, they, and the related class of small set
expanders, have taken on an increasingly important role in the field of approximation algorithms
(see, e.g., [GS11,RST12,GT13]). Thus, our second question is the following: does a strong parallel
repetition theorem hold for graphs with low threshold rank?

1.1 Parallel repetition and Cheeger’s inequality

In this work, we answer both of these questions using the new parallel repetition framework
of [DS13]. They study a relaxation to the value of the game, called val+(G), which, roughly speak-
ing, is the best value achieved on the game by a distribution of “fractional assignments”. These
“fractional assignments” are required to collectively look like a valid assignment, but individually
they may look very different than a valid assignment. This relaxation val+(G) enjoys several nice
analytic properties: for example, it strictly upper-bounds val(G), and it is multiplicative under
parallel repetition. From here, they give a new proof of Theorem 1 using the following three-step
process:

1. Supposing val(G⊗n) ≥ (1− η)n, then val+(G) ≥ (1− η). This gives a distribution of “fractional
assignments” with “fractional value” at least (1− η).

2. Round each “fractional assignment” to a 0/1-assignment using Cheeger rounding.
3. Combine these 0/1-assignments into a single 0/1 assignment using the correlated sampling

approach of [BHH+08].

Supposing that val(G⊗n) ≥ (1−η)n, then this will produce a solution to G with value (1−O(
√
η)).

This proof has revealed a strong connection between the parallel repetition theorem and Cheeger’s
inequality. To explain this, we begin with some necessary definitions. Given a graph H = (V,E),
the conductance of a set S ⊆ V is

φ(S) =
|E(S, S)|

d ·min{|S|, |S|}
,

where E(S, S) is the set of edges in H which cross from S to S. Given this, we can define the
conductance of H to be the worst-case conductance over all subsets S, i.e. φ(H) := minS⊂V (φ(S)).
Cheeger’s inequality states:

Cheeger’s inequality. Given a graph H = (V,E), let λ2 be the second-smallest eigenvalue of its
normalized Laplacian. Then

1

2
λ2 ≤ φ(G) ≤

√
2λ2.



The upper-bound φ(G) ≤
√

2λ2 is shown by taking the second-largest eigenvector v2, which has
a “fractional conductance” of λ2, and performing a process called “Cheeger rounding” on it to
produce a set S of conductance at most

√
2λ2. This is the same Cheeger rounding that takes place

in step 2 in the parallel repetition proof, and is the reason that we can only prove val(G) ≥ (1−√η)
if val+(G) ≥ (1− η). In both Cheeger’s inequality and in the parallel repetition theorem, we “lose
a square root”, and in both cases this happens for the same reason.

Thus, to prove a strong parallel repetition theorem, it seems we need a “strong” Cheeger’s
inequality, one that rounds vectors of “fractional conductance” η to sets of conductance O(η). Re-
cently, a whole host of works have been published which show how to modify/improve Cheeger’s in-
equality to account for the higher eigenvalues of the graph (for just a tip of the iceberg, see [LOGT12]
and [LRTV12]). One of these is indeed a “strong” Cheeger’s inequality for the case when the graph
has low threshold rank [KLL+13]:

Theorem 3. Given a graph H = (V,E), let 0 = λ1 ≤ λ2 ≤ · · · ≤ λ|V | be the eigenvalues of its
normalized Laplacian. Then for every k ≥ 2,

φ(H) ≤ O(k)
λ2√
λk
.

In particular, if λk is large for k a constant (in other words, if H has low threshold rank), then an
eigenvector of H with eigenvalue λ2 can be rounded into a cut of sparsity ≈ λ2. This theorem gives
hope for a strong parallel repetition theorem for the low threshold rank case.

1.2 Our results

We may now state our main theorem.

Theorem 4. Let G be a projection game, and let 1 = σ1 ≥ σ2 ≥ . . . ≥ σ|V | be the singular values
of G’s constraint graph. For any k ≥ 2, if val(G) ≤ (1− η), then

val(G⊗n) ≤

1−

√
1− σ2k
k

· η

Ω(n)

.

At a high level, our proof of this comes from combining Theorem 3 with the parallel repetition
framework of [DS13]. However, the interface between these two isn’t clean, and some care must be
taken in combining them. Furthermore, we can’t just apply Theorem 3 all at once; instead, we have
to wait to apply its various components at the appropriate time (at a high level, this is because
whereas the normal Cheeger rounding preservers marginals, this higher-order Cheeger rounding
only approximately preserves marginals).

In addition, we give another proof of strong parallel repetition for the special case of expanding
games. In other words, we reprove Theorem 4 in the case of k = 2, except the bound we get is

val(G⊗n) ≤
(
1− (1− σ22) · η

)Ω(n)
.

While this is (slightly) quantitatively worse, the proof is much easier: everything is elementary, and
the entire proof essentially rests on one well-timed application of Cauchy-Schwarz.



1.3 Tightness of our results

Our Theorem 4 is tight, as certified by the Odd Cycle Game. This should not be too surprising: the
Odd Cycle Game is tight for Theorem 1, and the cycle graph is tight for both the normal Cheeger’s
inequality and the “strong” Cheeger’s inequality of Theorem 3. To see that the Odd Cycle Game
is a tight example for our theorem, we begin with a description of it.

Let k ≥ 0, and set m := 2k + 1. Let Gm = (Vm, Em) be the cycle on m vertices. In the Odd
Cycle Game, the two players P1 and P2 are trying to convince the verifier that the graph Gm is
2-colorable. Formally, each player Pi is given as questions the vertices in Vm, and verifier expects
their labels to be in the set {0, 1}. The constraints are distributed as follows:

– With probability 1/2, a vertex v ∈ Vm is chosen uniformly at random and given to both players.
Player Pi responds with bi ∈ {0, 1}, and the constraint is that b1 = b2.

– With probability 1/2, an edge (v1, v2) ∈ Em is selected uniformly at random; P1 is given v1,
and P2 is given v2. Player Pi responds with bi ∈ {0, 1}, and the constraint is that b1 6= b2.

It is easy to see that val(G) = 1− 1
2m . In [Raz11], Raz determined how the value of G changes

under parallel repetition:

Theorem 5. For large enough n, val(G⊗n) ≥
(
1− 1

m2

)O(n)
.

Let us now calculate the bound our Theorem 4 gives for the Odd Cycle Game. The constraint
graph of the Odd Cycle Game is w/prob. 1/2 the identity mapping and w/prob. 1/2 a random step
on the cycle graph. As the cycle graph has eigenvalues cos(2πk/m) for each k ∈ {0, . . . ,m − 1}
(see, for example, [Tre11]) the constraint graph of the Odd Cycle Game has singular values 1/2 +
cos(2πk/m)/2 for each k ∈ {0, . . . ,m− 1}. For small values of k, this means that the k-th largest

singular value of the constraint graph is ≈ 1−
(
k
m

)2
. Plugging this into our Theorem 4, we see that

it gives a guarantee of

val(G⊗n) ≤
(

1− 1

m2

)Ω(n)

,

exactly matching Theorem 5.

1.4 Organization

Definitions and preliminary materials can be found in Section 2. Our proof of Theorem 4 can be
found in Section 3. The simple proof of strong parallel repetition for expanding games can be found
in Section 4.

2 Preliminaries

Two-prover one-round games. A two-prover one-round game G is associated with a bipartite graph
H = (U, V,E) (known as the constraint graph) and a set Σ of answers. Each edge (u, v) ∈ E is
associated with a predicate πu,v : Σ × Σ → {True,False}. The prover choses a random edge (u, v)
uniformly from E and send u, v to the two provers respectively. The provers respond with answers
f(u) and g(v), from the set Σ. The answers are accepted if πu,v(f(u), g(v)) is satisfied. We say G
is a projection game if for every predicate πu,v and every β ∈ Σ, there is at most one α ∈ Σ such
that πu,v(α, β) is satisfied. By val(G) we denote the best value achievable by functions f and g.

Given two two-prover one-round games G and H, we denote the parallel repetition of G1 and
G2 by G1 ⊗G2. This is the two-prover one-round game which is played as follows:



1. Sample (u1, v1) ∼ G1 and (u2, v2) ∼ G2.
2. Give question (u1, u2) to P1 and (v1, v2) to P2.
3. Receive answers (α1, α2) and (β1, β2).
4. Accept iff πu1,v1(α1, β1) = πu2,v2(α2, β2) = 1.

Matrices and vectors. Vectors will be indexed in one of three ways: either by vertices v ∈ V , by
labels β ∈ Σ, or by vertex/label pairs (v, β) ∈ V × Σ. As in [DS13], inner products will use the
uniform probability measure on vertices and the counting measure on labels. Thus, if f and g are
of the form f, g : V → R, then

〈f, g〉 = E
v∈V

f(v) · g(v);

if f and g are of the form f, g : Σ → R, then

〈f, g〉 =
∑
β∈Σ

f(β) · g(β);

and if f and g are of the form f, g : V ×Σ → R, then

〈f, g〉 = E
v∈V

∑
β∈Σ

f(v, β) · g(v, β).

Given f : V × Σ → R and a vertex v ∈ V , we will write f(v, ·) for the function mapping Σ → R
which, on input β ∈ Σ, outputs f(v, β). Essentially every function with domain Σ in this paper
will be produced in this fashion.

Now we define the matrix/vector and matrix/matrix products in accordance with these inner
products. If A is a |U×Σ|-by-|V ×Σ| matrix and g : V ×Σ → R is a vector, then the matrix/vector
product Ag : U×Σ → R is the vector for which (Ag)(u, α) = 〈A(u,α), g〉, where A(u,α) is the (u, α)-th

row of A. Similarly, if f : U×Σ → R is a vector, then the matrix/vector product f>A : V ×Σ → R
is the (transposed) vector for which (f>A)(v, β) = 〈f, a(v,β)〉, where a(v,β) is the (v, β)-th column
of A. By setting up the matrix/vector product in this way, we get the following set of equalities:

〈f,Ag〉 = f>Ag = 〈A>f, g〉.

If A and B are |U ×Σ|-by-|V ×Σ| matrices, then the matrix A>B can be defined as follows:

(AB)(v1,β1),(v2,β2) = (a(v1,β1), b(v2,β2)),

where a(v1,σ1) is the (v1, σ1)-th column of A and b(v2,σ2) is the (v2, σ2)-th column of B. Finally, given

two vectors f : (U ×Σ)→ R and g : (V ×Σ)→ R, the outer product f · g> is simply the matrix
in which (f, g>)(u,α),(v,β) = f(u,α) · g(v,β).

We note that these matrix products were defined only for matrices whose indices are of the form
V × Σ. However, as the above definitions only used the inner product defined on V × Σ, similar
products can be defined for matrices with indices of the form V or Σ using the inner products on
those spaces.

The projection game operator. We will associate with G a linear operator (also named G) which
projects assignments g : V ×Σ → R onto assignments of type U ×Σ → R. To begin, fix adjacent
vertices u and v. As previously defined, g(v, ·) is the function from Σ to R denoting the part of g
restricted to v. Write Gu←v for the operator which projects assignments for v onto assignments for
u. In other words,

(Gu←vg(v, ·)) (α) =
∑

β:πuv(β)=α

g(v, β).



Now we can define the action of the projection game operator G on g as follows:

(Gg)(u, α) = E
v∼u

(Gu←vg(v, ·)) (α) (1)

= E
v∼u

∑
β:πuv(α,β)=1

g(v, β).

To see why this is a natural operator to represent the game, let f : U → Σ and g : V → Σ be
assignments. Overloading notation, write f : U × Σ → R and g : V × Σ → R for the 0/1-valued
vectors which correspond to f and g. Then we have that

val(G; f, g) = f>Gg = 〈f,Gg〉.

Finally, though we will not need this, we note that the operators Gu←v and G can be realized
as matrices in the following way:

(Gu←v)α,β =

{
1 if πu,v(α, β) = 1,
0 otherwise,

and

G(u,α),(v,β) =

{
|V |
dU

if u ∼ v and πu,v(α, β) = 1,

0 otherwise,

where dU is the degree of the vertices in U .

Quadratic forms. We will be interested the quadratic form ‖Gg‖2, where g is of the form g :
V ×Σ → R. The exact expression for this quadratic form is somewhat cumbersome to work with,
but by appealing to Equation 1, we have the following expression, which will we use repeatedly.

‖Gg‖2 = E
u∈U

E
v1,v2∼u

〈Gu←v1g(v1, ·), Gu←v2g(v2, ·)〉. (2)

Here v1, v2 ∼ u means that v1 and v2 are independent, uniformly random neighbors of u. This also
shows that G is norm-reducing on fractional assignments, as for any fractional assignment g and
vertices u, v1, and v2,

〈Gu←v1g(v1, ·), Gu←v2g(v2, ·)〉 ≤ ‖Gu←v1g(v1, ·)‖ · ‖Gu←v2g(v2, ·)‖

≤ ‖Gu←v1g(v1, ·)‖2 + ‖Gu←v2g(v2, ·)‖2

2
.

Thus, by Equation (2)

‖Gg‖2 ≤ E
u∈U

E
v1,v2∼u

‖Gu←v1g(v1, ·)‖2 + ‖Gu←v2g(v2, ·)‖2

2
= ‖g‖2,

where the last line follows because H is biregular. Note that this is not necessarily true when g is
not a fractional assignment (in particular, the equality need not hold).

Projection games relaxation. The paper of [DS13] introduced a convenient relaxation for the value
of the game G. Before stating it, let us fix some notation. Because the game is bipartite, it is
convenient to use two different functions f : U ×Σ → R and g : V ×Σ → R to label the two vertex
sets. We will reserve α ∈ Σ to refer to labels on the U side and β ∈ Σ to refer to labels on the V
side. An important subset of functions for us will be the fractional assignments. We say that f is



a fractional assignment if for each u ∈ U , f(u, α) is nonzero for at most one α (a similar definition
holds for g).

A (usually) finite measure space is a finite set Ω along with a measure µ : Ω → R≥0 on that
set. Typically, we will keep the set explicit while the measure will be implicit. Given a quantity
q : Ω → R, we define the expectation with respect to Ω as

E
ω∼Ω

[q(ω)] =
∑
ω∈Ω

µ(ω) · q(ω).

Now, we can specify the relaxation. The measure space Ω is allowed to be arbitrary.

Projection games relaxation:

maximize val+(f, g) := E
ω∼Ω
〈fω, Ggω〉

subject to fω and gω are fractional assignments, for all ω ∈ Ω
E
ω∼Ω
‖fω(u, ·)‖2 ≤ 1, ∀u

E
ω∼Ω
‖gω(v, ·)‖2 ≤ 1, ∀v

f, g ≥ 0

Let val+(G) denote the value of the relaxation. We have the following two results, both from [DS13]:

Proposition 1. Let G be a game. Then val+(G) ≥ val(G).

Theorem 6. Let G1 and G2 two bipartite projection games and let G′1 = G>1 G1 and G′2 = G>2 G2.
Then

val+(G′1 ⊗G′2) = val+(G′1) · val+(G′2).

Combining these two with Claim 2.1 of [DS13], we see that

Proposition 2. Let G be a bipartite projection game. Then val(G⊗k) ≤ val+(G)k/2.

Sometimes the full power of the relaxation isn’t needed. In these cases, we can use the following
lemma:

Lemma 1. If there exists an assignment f such that ‖G⊗kf‖2 ≥ (1 − η)k, then there exists a
fractional assignment g : V ×Σ → R such that ‖Gg‖2 ≥ 1− η.

The constraint graph. A primary focus for us in this paper will be the constraint graph H and its
spectrum. Like G, we can represent H as a linear operator which projects vectors h : V → R onto
assignments of type U → R, as follows:

(Hh)(u) = E
v∼u

h(v).

We can represent H as a |U | × |V | matrix (which we will also refer to as H), defined as follows:

Hu,v =

{
|V |
dU

if u ∼ v,
0 otherwise,



where dU is the degree of the vertices in U .
For the spectrum of H we will use the SVD. Suppose the rank of H is d, and let l1, . . . , ld be

its left-singular vectors, r1, . . . , rd be its right-singular vectors, and σ1 ≥ . . . ≥ σd be its singular
values. Then we can write

H =

d∑
i=1

σi · li · r>i . (3)

Throughout, we will assume that H is biregular. As a result, σ1 = 1, l1 and r1 are the constantly-
one vectors, and σi ∈ [0, 1] for all i. In addition, the graph on V corresponding to H>H is also
regular.

Constraint graph assignments. If g : V ×Σ → R≥0 is a fractional assignment, then there is at most
one β ∈ Σ such that g(v, β) is nonzero, for each v ∈ V . Thus, we can write g(v, β) = h(v) · I(v, β),
where h : V → R and I(·, ·) is a 0/1 indicator. For convenience, we will require that for each v ∈ V ,
there exists an i ∈ Σ such that I(v, β) = 1. As a result, we can write h as h(v) =

∑
β∈Σ g(v, β).

Some properties of g carry over to h. First, because g is a fractional assignment,

‖h‖2 := E
v∈V

[
h(v)2

]
= E

v∈V

∑
β∈Σ

g(v, β)2

 = ‖g‖2 = 1.

Next, using H as the constraint graph of G, we have that (Hh)(u) =
∑

α∈Σ(Gg)(u, α). As a result,

(Hh)(u)2 =

(∑
α∈Σ

(Gg)(u, α)

)2

≥
∑
α∈Σ

(Gg)(u, α)2,

where the inequality follows from the nonnegativity of g. Taking an expectation over u, this means
that ‖Hh‖2 ≥ ‖Gg‖2.

Operators. So as not to conflict with the above notation, we will write Id for the identity operator.
We note that because we are using nonstandard matrix multiplication, the matrix representing the
Id operator may have some number other than one on its diagonal.

3 Parallel repetition for low threshold rank graphs

In this section, we prove the following theorem.

Theorem 7. Let G be a projection game over vertex set U ∪ V . Given k ≥ 2, let σk be the k-
th singular value of G’s constraint graph H. If S = (f, g,Ω) is a solution to the relaxation with
val+(S) ≥ 1− η, then

val(G) ≥ 1− 64kη√
1− σ2k

.

Combining this with Proposition 2 yields Theorem 4.

Proof. As val+(S) is monotically increasing in f and g, we can assume that

E
ω∼Ω
‖fω‖2 = E

ω∼Ω
‖gω‖2 = 1.

In particular, this means that for each α, β ∈ Σ,

E
ω∼Ω
‖fω(α, ·)‖2 = E

ω∼Ω
‖gω(β, ·)‖2 = 1.

We begin our proof by focusing in on g.



Proposition 3. Eω∼Ω ‖Ggω‖2 ≥ 1− 2η.

Proof. By Cauchy-Schwarz,

1− η ≤ E
ω∼Ω
〈fω, Ggω〉 ≤ E

ω
‖fω‖ · ‖Ggω‖ ≤

Eω ‖fω‖2 + Eω ‖Ggω‖2

2
.

Since E ‖fω‖2 = 1, this inequality is satisfied only if E ‖Ggω‖2 ≥ 1− 2η.

Next, we show how to convert g into a 0/1-valued solution, albeit one with a lower value.

Lemma 2. There is a 0/1 valued solution (g′ω, Ω
′) with

E
ω∼Ω′

‖Gg′ω‖2 ≥ E
ω∼Ω′

‖g′ω‖2 −
4η√

1− σ2k
.

Furthermore, 1
8k ≤ Eω∼Ω′ ‖g′ω(v, ·)‖2, for each v ∈ V .

Proof. For a fixed ω ∈ Ω, gω is a fractional assignment for the V vertices in G. We will “round”
each gω independently using the following lemma.

Lemma 3. Let g : V × Σ → R≥0 be a fractional assignment for G. Then there exists a measure
µ : [0,∞)→ R≥0 and a 0/1-assignment g(t) : V ×Σ → {0, 1}, for each t ≥ 0, such that

E
t∼µ
〈g(t), (Id−G>G)g(t)〉 ≤

1

2
+

√
2√

1− σ2k

 〈g, (Id−G>G)g〉,

Furthermore, 1
8kg(v, β)2 ≤ Et∼µ g

(t)(v, β)2 ≤ g(v, β)2 , for each v ∈ V, β ∈ Σ.

This lemma is based on the improved Cheeger’s inequality from [KLL+13]. We defer the proof
to Appendix A.

For each ω ∈ Ω, apply Lemma 3 to gω. Let µω be the resulting measure and g
(t)
ω be the resulting

0/1-assignments. Now, set Ω′ := Ω × [0,∞), and let its corresponding measure be distributed
as follows: sample ω ∼ Ω and t ∼ µω, and output (ω, t). The 0/1-valued solution we will use is

(g
(t)
ω , Ω′). Taking the expectation over ω, Lemma 3 guarantees that

1

8k
E
ω∼Ω

gω(v, β)2 ≤ E
ω∼Ω

E
t∼µω

g(t)ω (v, β)2 ≤ E
ω∼Ω

gω(v, β)2,

for each v, β. Since Eω∼Ω ‖gω(v, ·)‖2 = 1 for each v ∈ V , this means that Eω,t ‖g(t)ω (v, ·)‖2 is

between 1
8k and 1. The upper bound is necessary to show that (g

(t)
ω , Ω′) is a valid solution to the

projection games relaxation, and the two bounds prove the last part of the lemma. In addition, the

lower bound shows that Eω,t ‖g(t)ω ‖2 ≥ 1
8k .

Let us calculate how well this solution does on average:

E
ω∼Ω

E
t∼µω
〈g(t)ω , (Id−G>G)g(t)ω 〉 ≤

1

2
+

√
2√

1− σ2k

 E
ω∼Ω
〈gω, (Id−G>G)gω〉

≤

1 +
2
√

2√
1− σ2k

 η. (by Proposition 3)

Finally, using the bound 1 + 2
√

2 ≤ 4 and rearranging slightly gives the inequality in the lemma.
(We note that Σ′ is not a finite set, but as in [DS13] this is not an issue.)



With (g′ω, Ω
′) in hand, the rest of the proof will closely follow the proof of Lemma 5.5 from [DS13].

The main difference is that Eω∼Ω′ ‖Gg′ω‖2 is guaranteed to be large only in relation to Eω∼Ω′ ‖g′ω‖2,
and not just in isolation. However, we have the guarantee that g′ω assigns each v ∈ V a value a
nonnegligible fraction of the time (i.e. with measure at least 1

8k ). This fact will allow us to extract
a good assignment from (g′ω, Ω

′).

Lemma 4. There exists an assignment A : V ×Σ → {0, 1} such that

‖GA‖2 ≥ 1− 64kη√
1− σ2k

.

Proof. Set ν = 4η/
√

1− σ2k. Let Ω be Ω′ rescaled to be a probability distribution. In other words,

set s := EΩ′ 1, and set Ω = Ω′

s . Then

– Eω∼Ω′ ‖Gg′ω‖2 ≥ s ·Eω∼Ω ‖g′ω‖2 − ν, and

– Eω∼Ω ‖g′ω(v, ·)‖2 ≥ 1
8ks , for all v.

To produce the assignment A guaranteed by the lemma, we have to somehow combine the
various g′ωs, each of which may only assign a label to a small fraction of the vertices in V , into
a single global assignment for all of the vertices in V . To do this, we use the correlated sampling
approach of [BHH+08]. Let A : V ×Σ → {0, 1} be the assignment generated as follows:

1. Repeatedly sample ω ∼ Ω.

2. The first time that g′ω(v, β) 6= 0 for some β ∈ Σ, set A(v, β) = 1.

3. Stop when all values of A have been determined.

Note that once A(v, β) is set to 1 for some β ∈ Σ, then A(v, β′) will remain 0 for the rest of the
procedure, for any β′ 6= β. Thus, A is a valid assignment. We will show that this A matches the
performance guaranteed by the lemma statement, at least in expectation. To do so, we will look at
the following expression for ‖GA‖2:

‖GA‖2 = E
u∈U

E
v1,v2∼u

〈Gu←v1A(v1, ·), Gu←v2A(v2, ·)〉.

Note that for a fixed u, v1, v2, the inner product 〈Gu←v1A(v1, ·), Gu←v2A(v2, ·)〉 is 0/1-valued. Thus,
we can view this as a constraint on the assignment A, and we will say that A satisfies the constraint
C = (u, v1, v2) if this inner product evaluates to 1. We will calculate ‖GA‖2 by analyzing the
probability it satisfies each constraint.

Fix a constraint C = (u, v1, v2). We will underestimate the probability that A satisfies C by
counting it only when A gets its assignments for v1 and v2 from the same ω ∼ Ω. To do this, say
that g′ω satisfies C if g′ω assigns values to both v1 and v2, and these values satisfy C. Then

Pr[A satisfies C] ≥
Prω∼Ω[g′ω satisfies C]

Prω∼Ω[g′ω assigns at least one of v1 and v2]
.

Set p1 := EΩ ‖g′ω(v1, ·)‖2 and p2 := EΩ ‖g′ω(v2, ·)‖2. Note that Prω[g′ω assigns v1] = p1, and
Prω[g′ω assigns v2] = p2. Thus, the denominator could potentially be any number between max{p1, p2}
and p1 + p2. However, the next lemma, which is Lemma 5.8 in [DS13], shows that in fact we can
take the denominator to be 1

2 (p1 + p2) with little cost:



Lemma 5. For a constraint C = (u, v1, v2), set

γC := 1−

(
PrΩ[g′ω satisfies C]

1
2

(
EΩ ‖g′ω(v1, ·)‖2 + EΩ ‖g′ω(v2, ·)‖2

)) .
Then Pr[A satisfies C] ≥ (1− γC)(1 + γC).

Set ψ(z) = (1−z)/(1+z). In addition, let C ∼ G denote the natural distribution on constraints,
i.e. the distribution which selects u ∈ U uniformly at random, selects v1, v2 ∼ u independently and
uniformly at random, and outputs (u, v1, v2). Now, we have

E ‖GA‖2 = E
C∼G

Pr[A satisfies C] ≥ E
C
ψ(γC) ≥ ψ

(
E
C
γC

)
, (4)

where the final step uses the convexity of ψ. To bound EC γC ,

1−E
C
γC = E

C

(
2

EΩ ‖g′ω(v1, ·)‖2 + EΩ ‖g′ω(v2, ·)‖2

)
Pr
Ω

[g′ω satisfies C]

Set XC = 1
2

(
EΩ ‖g′ω(v1, ·)‖2 + EΩ ‖g′ω(v2, ·)‖2

)
and YC = PrΩ[g′ω satisfies C]. Then we note that

– XC ≥ 1
8ks , and

– EC YC ≥ EC XC − ν
s .

Now, we calculate

E
C
γC =

(
1−E

C

YC
XC

)
=

(
E
C

XC − YC
XC

)
≤ 8ks

(
E
C
XC − YC

)
(because XC ≥ 1

8ks always)

≤ 8kν.

By Equation (4), E ‖GA‖2 ≥ (1 − 8k · ν)/(1 + 8k · ν) ≥ 1 − 16k · ν. By the probabilistic method,

an assignment must therefore exist which achieves this value. Substituting ν = 4η/
√

1− σ2k yields

the lemma.

Finally, we can show an assignment (f,A) for which 〈f,GA〉 is large. This is because

‖GA‖2 = 〈GA,GA〉 ≤ max
f
〈f,GA〉 ≤ val(G),

where the max is taken over assignments to U . Thus, ‖GA‖2 is a lower bound on the value of G,
and we are done.

4 Parallel repetition for expanders

In this section, we give a simple proof of Theorem 7 in the expanding games case, albeit with a
worse dependence on σ2. Our proof follows from combining the following theorem with Lemma 1.

Theorem 8. Let G be a projection game over vertex set U ∪V . Let σ2 be the second singular value
of G’s constraint graph H. If S = (f, g,Ω) is a solution to the relaxation with val+(S) ≥ 1 − η,
then

val(G) ≥ 1−
(

16η

1− σ22

)
.



Proof. Lemma 3.1 of [DS13] shows that in this case, there exists a single fractional assignment
g : V ×Σ → R≥0 such that ‖Gg‖2 ≥ 1−η and ‖g‖ = 1. Write g(v, i) = h(v) ·I(v, i), as in Section 2.
Recall from Equation (3) that we can write H as

H =
d∑
i=1

σi · li · r>i , (5)

where l1 and r1 are the constantly-one vectors. Then ‖Hh‖2 ≥ 1− η and ‖h‖2 = 1. The following
proposition shows that h itself must be mostly constant.

Proposition 4. Write h = a1r1 + . . .+ adrd + o, where o is orthogonal to r1, . . . , rd. Then

a21 ≥ 1−
(

η

1− σ22

)
.

Proof. We can write Hh =
∑d

i=1 σiaili, and so

‖Hh‖2 =
d∑
i=1

σ2i a
2
i ≤ a21 + σ22 ·

r∑
i

a2i

= a21 + σ22 · (1− a21) = (1− σ22) · a21 + σ22.

Finally, we know that ‖Hh‖2 ≥ (1− η). Putting everything together,

a21 ≥
(

1− η − σ22
1− σ22

)
,

giving us the proposition.

Because g is a good fractional assignment and Proposition 4 shows that it must be near-constant,
it is reasonable to suppose that in fact the function I is a good 0/1-assignment. With this in mind,
it is our goal to show that ‖GI‖2 is large given that ‖Gg‖2 is large. To this end, define h′ := h−a1r1,
and rewrite ‖Gg‖2 as follows:

〈Gg,Gg〉 = 〈G · hI,G · hI〉
= 〈G(a1r1 + h′)I,G(a1r1 + h′)I〉
= a21〈G · r1I,G · r1I〉+ 2a1〈G · r1I,G · h′I〉+ 〈G · h′I,G · h′I〉. (6)

Now, r1 is the constantly-one function, so r1I = I. Next,

〈G · h′I,G · h′I〉 ≤ ‖h′I‖2 = ‖h′‖2 ≤
(

η

1− σ22

)
,

where the first inequality uses the fact that G is norm-reducing. Applying these to Equation (6),
along with the fact that ‖Gg‖2 ≥ 1− η, yields

a21〈GI,GI〉+ 2a1〈GI,G · h′I〉 ≥ 1− η −
(

η

1− σ22

)
.

If 〈GI,G · h′I〉 is negative, then 〈G · I,G · I〉 ≥ 1− 2η, and we are done. Otherwise, we may upper
bound both a21 and a1 with 1, giving

〈GI,GI〉+ 2〈GI,G · h′I〉 ≥ 1− η −
(

η

1− σ22

)
. (7)

It is now our goal to show that 〈GI,G · h′I〉 must be O(η). In fact, we will show the following
lemma.



Lemma 6. 〈GI,G · h′I〉 ≤
√

η·(1−‖GI‖2)
1−σ2

2
.

Proof. For the proof of this lemma, it will be convenient to define the operator (GI) which acts
on functions ν : V → R as follows: (GI)ν := G(I · ν). For any such function ν, I · ν is a fractional
assignment. As a result, (GI) is norm-reducing:

‖(GI)ν‖ = ‖G(I · ν)‖ ≤ ‖I · ν‖ = ‖ν‖.

Here the inequality follows from the fact that G is norm-reducing on fractional assignments. In
particular, (GI)’s singular values lie in the interval [0, 1].

Set NV = |V |. Let v1, . . . , vNV be the eigenvectors of (GI)>(GI) with eigenvalues λ1, . . . , λNV .
Then we can write (GI)>(GI) as follows:

(GI)>(GI) =

NV∑
i=1

λi · vi · v>i .

Because (GI) is norm-reducing, we know that λi ∈ [0, 1] for all i.

Let 1 : V → R denote the all-ones vector (i.e., 1(v) = 1 for all v). As h′ is orthogonal to 1, we
have that 〈1, h′〉 = 0. Thus,

0 = 〈1, h′〉 = 1> · Id · h′

= 1>

(
NV∑
i=1

vi · v>i

)
h′

=

NV∑
i=1

〈1, vi〉 · 〈vi, h′〉. (8)

Next, the quantity we are trying to compute is

〈GI,G(Ih′)〉 = 〈(GI)1, (GI)h′〉 = 1>(GI)>(GI)h′

= 1> ·

(
NV∑
i=1

λi · vi · v>i

)
· h′ =

NV∑
i=1

λi〈1, vi〉 · 〈vi, h′〉.

Because Equation (8) equals zero, we can subtract it from this equation and get that

〈GI,G(Ih′)〉 =

NV∑
i=1

(λi − 1)〈1, vi〉 · 〈vi, h′〉

≤

√√√√NV∑
i=1

|λi − 1| · 〈1, vi〉2 ·

√√√√NV∑
i=1

|λi − 1| · 〈vi, h′〉2.

Now, because λi ∈ [0, 1], |λi − 1| = 1− λi. As

NV∑
i=1

(1− λi) · 〈1, vi〉2 = ‖1‖2 − ‖(GI)1‖2,



and similarly for h′, we have that

〈GI,G(Ih′)〉 ≤
√
‖1‖2 − ‖(GI)1‖2 ·

√
‖h′‖2 − ‖(GI)h′‖2

≤
√

1− ‖GI‖2 · ‖h′‖

≤

√
η · (1− ‖GI‖2)

1− σ22
,

which completes the proof.

Now we can show the main result. Combining Lemma 6 and Equation 7, we see that

1− η −
(

η

1− σ22

)
≤ ‖GI‖2 + 2

√
η · (1− ‖GI‖2)

1− σ22
.

Rearranging this,

(1− ‖GI‖2) ≤ 2

√
η

1− σ22
·
√

1− ‖GI‖2 + η +

(
η

1− σ22

)
.

Now, either the first term on the right-hand side is larger than the next two terms or the next two
terms are larger than the first term. In the first case,

(1− ‖GI‖2) ≤ 4

√
η

1− σ22
·
√

1− ‖GI‖2.

Dividing both sides by
√

1− ‖GI‖2 and squaring, we get that

(1− ‖GI‖2) ≤ 16

(
η

1− σ22

)
.

In the second case,

(1− ‖GI‖2) ≤ 2

(
η +

(
η

1− σ22

))
.

In both cases, the bound is at most (1− ‖GI‖2) ≤ 16η/(1− σ22). Thus, ‖GI‖2 ≥ 1− 16η/(1− σ22).
As a result, there is an assignment f to the U vertices such that 〈f,GI〉 ≥ 1 − 16η/(1 − σ22), and
we are done.
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A Proof of Lemma 3

Lemma 7 (Lemma 3 restated). Let g : V × Σ → R≥0 be a fractional assignment for G. Then
there exists a measure µ : [0,∞)→ R≥0 and a 0/1-assignment g(t) : V ×Σ → {0, 1}, for each t ≥ 0,
such that

E
t∼µ
〈g(t), (Id−G>G)g(t)〉 ≤

1

2
+

√
2√

1− σ2k

 〈g, (Id−G>G)g〉,

Furthermore, 1
8kg(v, β)2 ≤ Et∼µ g

(t)(v, β)2 ≤ g(v, β)2, for each v ∈ V, β ∈ Σ.

Proof. Our proof of this lemma follows the (first) proof of Theorem 1.2 from [KLL+13]. We will
first show that there exists a (2k + 1)-step function which approximates g well, and then we will
use this to show how to round g into a good 0/1-assignment. We can accomplish the first step
by essentially using Lemma 3.1 from [KLL+13] as a black box, but the second step requires us to
tailor the proof of Proposition 3.2 from [KLL+13] to our particular setting. The reason for this is
as follows: when we compute norms, we use the uniform measure over the vertices. However, in
[KLL+13], the norms give each vertex a weight depending on their degree. In our first step, we
will be using the graph H>H, which is regular, so these two norms coincide. In our second step,

http://theory.stanford.edu/~trevisan/cs359g/lecture06.pdf
http://theory.stanford.edu/~trevisan/cs359g/lecture06.pdf


however, we will be using the graph G>G, which is not necessarily regular, and so we will have to
perform some extra work.

Set ρ ≥ 0 so that ‖Gg‖2 = (1− ρ)‖g‖2. Write g(v, i) = h(v) · I(v, i), as in Section 2. We begin
with the following proposition.

Proposition 5. There is a (2k + 1)-step approximation of h, called h̃, such that

‖h− h̃‖2 ≤
(

4ρ

1− σ2k

)
· ‖h‖2.

Proof. From Section 2, we know that ‖Hh‖2 ≥ ‖Gg‖2 and ‖h‖2 = ‖g‖2. As a result, ‖Hh‖2 ≥
(1− ρ)‖h‖2. Another way of writing ‖Hh‖2 = 〈Hh,Hh〉 is 〈h,H>Hh〉. Using Equation (3), H>H
is equal to

H>H =

d∑
i=1

σ2i · ri · r>i .

H>H is the adjacency matrix corresponding to the graph on V whose edges are distributed as
follows: first pick u ∈ U uniformly at random, and output the pair (v1, v2), where v1 and v2 are
independent and uniformly random neighbors of u. Because the constraint graph of G is biregular,
the graph H>H corresponds to is regular.

The Laplacian of this graph is Id−H>H, and its eigenvalues are 0 = 1− σ21 ≤ . . . ≤ 1− σ2d, in
addition to the eigenvalue 1 (with some multiplicity). As

〈h, (Id−H>H)h〉 = 〈h, Id · h〉 − 〈h,H>Hh〉 ≤ ρ‖h‖2,

we can apply Lemma 3.1 from [KLL+13] to get a (2k + 1)-step approximation of h, called h̃, such
that

‖h− h̃‖2 ≤
(

4ρ

1− σ2k

)
· ‖h‖2.

As mentioned above, we are able to apply their lemma because H>H is a regular graph. We note
that the graph H>H has self-loops, and while their Lemma 3.1 does not explicitly mention this,
the proof goes through equally well in this case.

We would now like to apply Proposition 3.2 from [KLL+13] to show how to round g into a
good 0/1-assignment. Unfortunately, as mentioned above, G is not necessarily biregular (as G is a
projection game, the vertices on the V side have the same degree, but the U vertices may not), and
so G>G is not necessarily regular. However, H>H is regular, and this allows us to follow roughly
the same proof as [KLL+13].

Proposition 6. There exists a measure µ : [0,∞) → R≥0 and a 0/1-assignment g(t) : V × Σ →
R≥0, for each t ≥ 0, such that

E
t∼µ
〈g(t), (Id−G>G)g(t)〉 ≤ 1

2
〈g, (Id−G>G)g〉+

1√
2

√
〈g, (Id−G>G)g〉 · ‖h− h̃‖

Proof. To begin, we will write 〈g,G>Gg〉 in a way that separates the underlying constraint graph
H from the constraints πu,v on the edges. By Equation (2),

〈g,G>Gg〉 = E
u∈U

E
v1,v2∼u

〈Gu←v1g(v1, ·), Gu←v2g(v2, ·)〉.



Note that as g is a fractional assignment, for any neighbors u and v,

‖Gu←vg(v, ·)‖2 = ‖g(v, ·)‖2.

As a result,

〈g, Id · g〉 = E
u∈U

E
v1,v2∼u

(
‖g(v1, ·)‖2 + ‖g(v2, ·)‖2

2

)
= E

u∈U
E

v1,v2∼u

(
‖Gu←v1g(v1, ·)‖2 + ‖Gu←v2g(v2, ·)‖2

2

)
.

This gives the following familiar-ish expression for the Laplacian of the game:

〈g, (Id−G>G)g〉 = E
u∈U

E
v1,v2∼u

(
‖Gu←v1g(v1, ·)−Gu←v2g(v2, ·)‖2

2

)
.

As ‖Gg‖2 = (1− ρ)‖g‖2, this Laplacian equals ρ‖g‖2.
Now, let us define the randomized rounding procedure for g. Given t ≥ 0, first define the

threshold function h(t)(v) = 1[h(v) ≥ t]. Let M be the maximum value of h, and let µ : [0,M ]→ R
be the measure defined in the proof of Proposition 3.2 of [KLL+13]. Then by Claim 3.3 of [KLL+13],

E
t∼µ

[h(t)(v)2] ≥ 1

8k
h(v)2.

Averaging this over all v ∈ V , Et∼µ ‖h(t)‖2 ≥ 1
8k‖h‖

2. In addition, though this is not stated
anywhere in [KLL+13], it is easy to see that

E
t∼µ

[h(t)(v)2] ≤ 1

2
h(v)2 ≤ h(v)2

as well.3 Using this, we define the threshold function for g as g(t) = h(t) · I.
Next, we translate Claim 3.4 from [KLL+13] into our language:

Claim. Let u ∈ U and v1, v2 ∈ V be adjacent to u. Write g1(α) = (Gu←v1g(v1, ·)) (α), g2(α) =

(Gu←v2g(v2, ·)) (α), and define g
(t)
1 and g

(t)
2 analogously. Then

E
t∼µ

∥∥∥g(t)1 − g
(t)
2

∥∥∥2 ≤ 1

2
‖g1 − g2‖ ·

(
|h(v1)− h̃(v1)|+ |h(v2)− h̃(v2)|+ ‖g1 − g2‖

)
.

Proof. In the case when v1 = v2, both sides of inequality are zero, and so the statement is true.
Otherwise, let β1, β2 ∈ Σ be the labels assigned to v1 and v2 by g, meaning that I(v1, β1) =
I(v2, β2) = 1. Let us consider the following two cases.

Case πuv1(β1) 6= πuv2(β2): In this case, we will show simply that

E
t∼µ

∥∥∥g(t)1 − g
(t)
2

∥∥∥2 ≤ 1

2
‖g1 − g2‖2.

Because πuv1(β1) 6= πuv2(β2), the left-hand side is Et∼µ ‖g(t)(v1, ·)‖2 + ‖g(t)(v2, ·)‖2, and the right-
hand side is 1

2

(
‖g(v1, ·)‖2 + ‖g(v2, ·)‖2

)
. The inequality now follows, as

E
t∼µ
‖g(t)(v, ·)‖2 ≤ 1

2
‖g(v, ·)‖2,

for any v ∈ V .

3 This follows because
∫ t
0
xdx = t2/2.



Case πuv1(β1) = πuv2(β2): This case follows directly from the proof of Claim 3.4 in [KLL+13],
completing the proof.

With this in place, the rest of the proof follows the proof of Proposition 3.2 in [KLL+13], and
we get that

E
t∼µ
〈g(t), (Id−G>G)g(t)〉 ≤ 1

2
〈g, (Id−G>G)g〉+

1√
2

√
〈g, (Id−G>G)g〉 · ‖h− h̃‖,

the bound we were looking for.

Now, by combining Propositions 5 and 6 we see that

E
t∼µ
〈g(t), (Id−G>G)g(t)〉 ≤ 1

2
ρ‖g‖2 +

√
2√

1− σ2k
ρ‖g‖2

=

1

2
+

√
2√

1− σ2k

 ρ‖g‖2.

As ρ‖g‖2 = 〈g, (Id − G>G)g〉, this is as guaranteed by the lemma. The bounds on Et∼µ g
(t)(v, β)

follow from Proposition 6.
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